

DIPLOMATERVEZÉSI FELADAT

Ficsor Attila
Mérnökinformatikus hallgató részére

Nagyhatékonyságú predikátum kiértékelő illesztése

gráfgenerátor algoritmushoz

Kritikus rendszerek tervezésére széles körben alkalmaznak modellezőeszközöket, amelyek gráf

alapú modellek felhasználásával teszik automatizálhatóvá és ellenőrizhetővé a fejlesztés

számos lépését. Azonban, mint minden szoftver, maguk a modellezőeszközök is

tartalmazhatnak hibákat, melyek érvényteleníthetik az ellenőrzések eredményeit. Ezért

kiemelten fontos a modellezőeszközök alapos tesztelése. Továbbá egy modern

modellezőeszköznek akár több millió elemből álló modelleket is képesnek kell lennie

feldolgozni, ezért egyre inkább elterjedté válik a modellezőeszközök teljesítményének

szisztematikus mérése (benchmark).

Szisztematikus teszteléshez és teljesítményméréshez mindenekelőtt egy diverz és realisztikus

modellkészletre van szükség, ahol a modellek szolgáltatják a tesztbemeneteket. A

tanszékünkön fejlesztett VIATRA Solver keretrendszer célja épp ezért olyan szintetikus

modellek automatikus előállítása, amelyek tesztbemenetként szolgálhatnak.

A dolgozat célja, hogy kiegészítse a VIATRA Solver keretrendszert olyan predikátum kiértékelő

algoritmussal, amely közvetlenül a VIATRA Solver belső adatszerkezetei fölött végez logikai

érvelést. Ezáltal nagymértékben javíthatóvá válik a VIATRA Solver skálázhatósága és

hordozhatósága.

A hallgató feladatának a következőkre kell kiterjednie:

 Ismerje meg és mutassa be a predikátum kiértékelés folyamatát a VIATRA Solver

keretrendszerben.

 Javasoljon egy olyan architektúrát, amely közvetlenül illeszt egy gráfminta-illesztő

rendszert a VIATRA Solver belső adatszerkezeteihez.

 Készítsen eszköztámogatást, amely támogatja predikátumok fejlesztését és

kiértékelését.

 Munkáját értékelje, és hasonlítsa össze az elkészült rendszer skálázhatóságát és

hordozhatóságát a korábbi megvalósításéval.

Tanszéki konzulens: Dr. Semeráth Oszkár, tudományos munkatárs

Budapest, 2021.03.16.

…………………………..

Dr. Dabóczi Tamás

tanszékvezető

egyetemi tanár, DSc

Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Measurement and Information Systems

Integration of a High Performance
Predicate Evaluator to a Graph

Generator Algorithm

Master’s Thesis

Author Advisor
Attila Ficsor dr. Oszkár Semeráth

December 10, 2021

Contents

Kivonat i

Abstract iii

1 Introduction 1

1.1 Graph generation . 1

1.2 Critical autonomous systems . 1

1.3 Testing the correctness of autonomous components 2

1.4 Graph generation in testing . 2

1.5 Pattern matching in the past . 3

1.6 Structure of thesis . 3

2 Preliminaries 5

2.1 Advanced driver assistance systems . 5

2.1.1 Functional overview of autonomous components 6

2.1.2 Fault hypotheses . 6

2.1.3 Testing of ADAS and self driving systems 7

2.2 Graph generation . 7

2.2.1 Domain-specific languages . 7

2.2.1.1 Eclipse Modeling Framework 7

2.2.1.2 New specification language for modeling 8

2.2.2 Pattern matching . 10

2.2.2.1 VIATRA Query Language 10

2.2.2.2 Syntax of predicates in the new specification language . . . 12

3 4-valued graph predicate evaluation 15

3.1 4-valued graphs . 15

3.2 Creating graph patterns . 16

3.2.1 Defining predicates using disjunctive normal form 17

3.2.1.1 Building blocks of predicates 18

3.2.1.2 Predicates referencing relations 18

3.2.1.3 Conjunction of expressions 19

3.2.1.4 Disjunction of conjunctions 20

3.2.1.5 Referencing predicates inside predicates 20

3.3 Pattern matching on custom datastructures 21

3.3.1 Initiating the Rete network . 22

3.3.2 Applying changes to the model . 22

4 Testing of autonomous vehicles using graph predicates 25

4.1 Scenes and Situations . 25

4.2 Functional overview . 26

4.2.1 Map generation . 26

4.2.2 Situation generation . 30

4.2.3 Scene generation . 31

4.2.4 Test execution . 32

4.2.5 Test evaluation . 33

4.3 Testing approaches . 33

4.3.1 Metamorphic testing . 33

4.3.2 Coverage based testing . 35

4.4 Summary of scenario building . 36

5 Evaluation 37

5.1 Research questions . 37

5.2 Selected domain . 37

5.2.1 Patterns in VIATRA . 38

5.2.2 Patterns with the new syntax . 39

5.3 Measurement setup . 40

5.4 Measurement results . 41

5.5 Discussion of the results . 42

6 Conclusions and future work 45

Acknowledgements 47

List of Figures 49

Bibliography 49

Appendix 57

A.1 Workflow in operation . 57

A.1.1 Map generation . 57

A.1.2 Abstract situation generation . 57

A.1.3 Scene generation . 58

A.2 Scenic . 60

A.2.1 Supported Simulators . 60

A.3 CARLA . 61

A.3.1 The simulator . 61

A.3.2 World and client . 62

A.3.3 Actors and blueprints . 62

A.3.4 Maps and navigation . 62

A.3.5 Sensors and data . 63

HALLGATÓI NYILATKOZAT

Alulírott Ficsor Attila, szigorló hallgató kijelentem, hogy ezt a diplomatervet meg nem
engedett segítség nélkül, saját magam készítettem, csak a megadott forrásokat (szakiro-
dalom, eszközök stb.) használtam fel. Minden olyan részt, melyet szó szerint, vagy azonos
értelemben, de átfogalmazva más forrásból átvettem, egyértelműen, a forrás megadásával
megjelöltem.

Hozzájárulok, hogy a jelen munkám alapadatait (szerző(k), cím, angol és magyar nyelvű
tartalmi kivonat, készítés éve, konzulens(ek) neve) a BME VIK nyilvánosan hozzáférhető
elektronikus formában, a munka teljes szövegét pedig az egyetem belső hálózatán keresztül
(vagy autentikált felhasználók számára) közzétegye. Kijelentem, hogy a benyújtott munka
és annak elektronikus verziója megegyezik. Dékáni engedéllyel titkosított diplomatervek
esetén a dolgozat szövege csak 3 év eltelte után válik hozzáférhetővé.

Budapest, 2021. december 10.

Ficsor Attila
hallgató

Kivonat

Kritikus rendszerek tervezése és tesztelése során széles körben használnak modellezőesz-
közöket, amelyek gráf alapú modellek fehasználásával teszik automatizálhatóvá és ellen-
őrizhetővé a fejlesztés és tesztelés számos lépését. Napjainkban egyre gyakrabban használ-
nak mesterséges intelligencián alapuló komponenseket a fejlett vezetőtámogató rendszerek
(ADAS) fejlesztéséhez. Az autóktól kezdve a villamosokon át az önvezető ipari targonca-
gépekig számos alkalmazás létezik már, amelyekben autonóm komponenseket használnak,
és még több van fejlesztés alatt. Ezeket a járműveket autonóm komponensek irányítják
vagy segítik, amelyek az érzékelőik által gyűjtött adatok alapján hoznak döntéseket.

Ezek a mesterséges intelligenciát alkalmazó komponensek kritikusak, így kiemelten
fontos a helyes viselkedésüket biztosítani, mivel hiba esetén jelentős anyagi károk kelet-
kezhetnek, vagy akár emberi életek is veszélybe kerülhetnek. Még a legkorszerűbb tesz-
telési technikák sem képesek hatékonyan támogatni az automatizált tesztelést. Ezeknél
a rendszereknél komoly kihívást jelent, hogy a paramétertér végtelen, valamint a fizikai
szenzoradatok kezelése is nehéz. Továbbá a rendszer követelményei nem teljesen ismertek,
mivel nem rendelkezünk a legjobb vezetési gyakorlatok teljes listájával.

Szisztematikus teszteléshez mindenekelőtt egy diverz és realisztikus modellkészletre
van szükség, ahol a modellek szolgáltatják a tesztbemeneteket. A tanszékünkön fejlesz-
tett VIATRA Solver keretrendszer célja épp ezért olyan szintetikus modellek automatikus
előállítása, amelyek tesztbemenetként szolgálhatnak.

A dolgozatom célja, hogy kiegészítsem a VIATRA Solver keretrendszert olyan predi-
kátum kiértékelő algoritmussal, amely közvetlenül a VIATRA Solver belső adatszerkezetei
fölött végez logikai érvelést. Ezáltal nagymértékben javíthatóvá válik a VIATRA Solver
skálázhatósága és hordozhatósága. Az elkészült megoldás előnyeit és használatát egy eset-
tanulmányon mutatom be.

i

Abstract

During the design and testing of critical systems, modeling tools are widely used, which
help make it possible to automate several steps of development and testing with the usage
of graph-based models. Nowadays components based on artificial intelligence are more
and more commonly used for developing Advanced driver-assistance systems (ADAS).
From cars to trams and forklifts, many applications already exist and use autonomous
components, and even more are under development. These vehicles are controlled or
assisted by such autonomous components, that make decisions using the data collected by
their sensors.

The correct behavior of these components using artificial intelligence is critical from a
safety point of view because, in case of an error, major property damage can occur, or
human lives can be in danger. Therefore, the automotive industry specifies strict safety
standards, which are challenging to satisfy. However, state-of-the-art testing techniques
were unable to support automated testing. Complete verification of these components is
not possible, because the feature space is infinite, even after abstraction methods, so we
can’t inquire physical sensor data. Furthermore, the requirements of the system are not
completely known, since we don’t have a complete list of driving best practices.

First and foremost, a diverse and realistic set of models is necessary for systematic testing,
where the models provide the test input. The purpose of the VIATRA Solver framework
developed in our department is generating synthetic models, which can serve as test inputs.

My goal is to extend the VIATRA Solver framework with a predicate evaluator algorithm,
which executes logical reasoning directly on the internal data structures of VIATRA Solver.
With this the scalability and portability of VIATRA Solver can be improved significantly.
I will illustrate the benefits and the usage of my solution in a case study.

iii

Chapter 1

Introduction

1.1 Graph generation

Graphs are the natural data structure to represent relational and structural information
in many domains, such as knowledge bases, social networks, molecule structures and even
the structure of probabilistic models [35]. The ability to generate graphs therefore has
many applications; for example, a generative model of molecular graph structures can
be employed for drug design [25, 34, 33, 52], generative models for computation graph
structures can be useful in model architecture search [50], and graph generative models
also play a significant role in network science [48, 5, 32].

The study of generative models for graphs dates back at least to the early work by Erdős
and Rényi [20] in the 1960s. These traditional approaches to graph generation focus on
various families of random graph models [53, 20, 26, 48, 9, 5], which typically formalize a
simple stochastic generation process (e.g., random, preferential attachment) and have well-
understood mathematical properties. However, due to their simplicity and hand-crafted
nature, these random graph models generally have limited capacity to model complex
dependencies and are only capable of modeling a few statistical properties of graphs. For
example, Erdős–Rényi graphs do not have the heavy-tailed degree distribution that is
typical for many real-world networks.

More recently, building graph generative models using neural networks has attracted in-
creasing attention [40, 25, 34]. Compared to traditional random graph models, these deep
generative models have a greater capacity to learn structural information from data and
can model graphs with complicated topology and constrained structural properties, such
as molecules.

1.2 Critical autonomous systems

In our everyday life we can already see critical autonomous systems, usually in the the
forms of vehicles, trams, or forklifts. In vehicles, these systems can range from simple
Advanced Driver-Assistance Systems (ADAS), like Lane Keeping Assist Systems, a further
development of the modern Lane-Departure Warning System, to Autonomous Driving
Systems (ADS), with full self-driving capabilities. In the near future we will see these
solutions more and more [17], as the technology matures and gets adopted to more aspects
of our lives.

1

1.3 Testing the correctness of autonomous components

Advanced Driver-Assistance Systems (ADAS) and Autonomous Driving Systems (ADS)
are nowadays one of the most common (safety) critical machine learning (ML)/deep learn-
ing (DL) based systems, therefore proving the correct behavior of such systems is im-
portant. These systems usually contain one or more machine learning or deep learning
components, thus their formal verification is not possible.

To prove the safety of an ADAS or an ADS, it needs to be thoroughly tested. Testing the
components is an important and challenging task (e.g. proving the correct behavior of a
computer vision component), but only the system level testing can showcase the correct
behavior of the whole system. One way to test the system is real-world testing, but as
written in [28], it requires billions of driven kilometers with 100 test cars, just to prove
the system’s safety in a probabilistic way (compared to human drivers).

To make the testing process more scalable, the test cases must be executed in a simulation
environment. There are many photo-realistic simulators with relatively good performance,
but the real challenge is to create a set of diverse and meaningful scenarios. A test set,
that covers the common scenarios and most of the possible corner cases as well. Manual
scenario creation is possible, but it requires a lot of manpower. There are also many
scenario (and maneuver) datasets available [13, 31], but most of these datasets contain
concrete scenarios or trajectories, which means limited mutation/perturbation possibilities
compared to functional or logical scenarios.

1.4 Graph generation in testing

During the design and testing phases of critical systems, modeling tools are widely used,
which help make it possible to automate several steps of development and testing with
the usage of graph-based models. First and foremost, a diverse and realistic set of models
is necessary for systematic testing, where the models provide the test input. The purpose
of the VIATRA Solver framework developed in our department is generating synthetic
models, which can serve as test inputs.

In my thesis I describe how I integrated a high performance predicate evaluator to the VI-
ATRA Solver framework. This solution makes VIATRA Solver significantly more scalable
and portable. I demonstrate the use of the graph generation using the newly integrated
predicate evaluator in a case study, where I generate diverse and realistic scenarios for
testing machine learning or deep learning components used in advanced driver-assistance
systems.

Using high-level (functional) scenarios is a good way to create concrete test cases. From
functional scenarios we can derive logical scenarios, even concrete scenario generation is
possible. A functional scenario gives a group of semantically equivalent logical/concrete
scenarios. Logical scenarios are general too (but more detailed than functional), there is a
lot of freedom at generating concrete scenarios: we can generate many concrete scenarios
with small mutations (environment, static or dynamic object behavior/property change,
weather conditions, etc.), this is a good way to test the robustness of a system or find any
adversarial scenario.

Generating and capturing scenarios are not only good for testing, but it is also a good way
to create diverse, not biased training data. Simulators can provide many different sensor
data (camera, LIDAR, etc), semantic segmentation view, and the ego vehicle’s actuator

2

signals (execution trace). Such data is useful for training the ML/DL components of any
ADAS/ADS.

1.5 Pattern matching in the past

Until now, the only way to create patterns was in Viatra Query Language. To use these, we
needed to work our way through a long list of steps setting up the integrated development
environment (IDE). This included installing Eclipse with EMF and VIATRA, then creating
a modeling project, where we could create a metamodel. From this we had to generate
model code and editor code, which we had to use to start a Runtime Eclipse. In this
instance of Eclipse we could create a Query Project, in it a VQL file, and in this file, we
could write our pattern in VQL language. When we saved this file, some Java classes were
generated, that we could use in our code.

This old method used EMF objects to store the data, and there was no other option. In
the existing codebase in the VIATRA framework, there are two ways to create (partial)
models used as the starting point of the generation. One is to create an EMF model either
using the graphical user interface (GUI) editor, or programmatically using Java. We can
then load this model, and VIATRA builds its own internal datastructure from the data
stored in the model.

The other way we can create a partial model is using a tabular method, where we can
create a table which we can use to write our data into. Then based on this table, VIATRA
creates its own internal datastructure, similar to the previous method. Unfortunately this
also only accepts data types provided by EMF.

There are several challenges resulting from these two methods:

• Setting up the IDE is not user-friendly, it has complicated software requirements
and necessary settings, that are difficult to find.

• Portability is limited, since one version has Eclipse dependency, while the other
version without this dependency is unstable.

• Originally the pattern matching operates on datastructures provided by EMF, which
imposes severe performance limitations.

1.6 Structure of thesis

The rest of this thesis has the following structure:

• First, in Chapter 2 I will discuss the most import technological and theoretical
background knowledge used in my work. This includes an overview of advanced
driver assistance systems,as well as modeling and model generation technologies.

• Next, I will provide a detailed overview of the structure and usage my solution in
Chapter 3.

• Then in Chapter 4 I demonstrate my solution in a case study.

• In Chapter 5 I will evaluate the scalability and the performance of my work.

3

• Finally, I will draw conclusion on my work and describe possible future work in
Chapter 6.

• Chapter 6 contains more information about the case study and the technologies used
in it.

The case study of my thesis is based on a Student Research Societies Report [21], in which
we present a toolchain, which aims to help the testing of system level behaviour of AI-
based systems. We introduce an approach to synthesize a test set, that targets critical
behaviour of AI-based systems.

4

Chapter 2

Preliminaries

There are some technologies that are necessary to have a good understanding of in order to
fully comprehend the motivation behind the task and the implementation of my solution.
In this chapter I explain in detail what ADASs are and how their testing is a strong
motivation for my work and also how graph generation works.

2.1 Advanced driver assistance systems

Advanced driver assistance systems are popular, nowadays not only high-end cars have
assistance features: almost every new car includes an anti-lock braking system (ABS),
traction control, and many have adaptive cruise control (ACC), forward collision warning
or others. Lately newer features are also popular: lane keeping or parking assistant,
adaptive variable suspension and more.

Various driver assistance systems exist, with different features and usage. Some of them
make driving comfortable (e.g. adaptive cruise control), some of them protect the user
and other traffic participants (e.g. precrash systems). There are ADASs with or without
actuators: emergency brakes can physically intervene when danger is detected, but alert
systems only help at the driver’s decision making.

Autonomous driver assistance systems are on Level 1 and Level 2 of the six levels of
driving automation defined in [15], meaning that it automates the driving only partially.
The Level 1 assistance systems can control the vehicle either laterally or longitudinally,
Level 2 assistance systems can do both: accelerate, brake and steer at certain scenarios,
but the driver must supervise the system at all times.

Many vehicles include an automatic emergency braking (AEB) system, it can recognize
dangerous scenarios and brakes (forward collision warning, but it can intervene). Some
vehicles use radar, lidar, camera or a combination of these sensors, to sense the envi-
ronment. Based on the perception it can calculate the crash potential, and intervene if
needed. Tesla Autopilot is an ADAS too, it can keep lane and do basic maneuvers like
turning, overtaking, but does not meet the Level 3 requirements, a human driver must
always supervise the system.

For obvious reasons, driver assistance systems must be extremely safe and reliable, from
software and hardware aspects as well. Testing systems without Machine Learning
(ML)/Deep Learning(DL) components is challenging, but in my work, I focus on systems
with ML/DL components.

5

2.1.1 Functional overview of autonomous components

Let us review the functional overview of the components (illustrated in Figure 2.1) as
based on state-of-the art publications [16] and autonomous driving standards like [4, 15].

Figure 2.1: Functional overview of a generic ADAS component.

• An Advanced driver-assistance systems (ADAS) are operating in a complex environ-
ment (context).

• The environment of the system is observed by sensors (e.g. camera, LIDAR and
radar subsystems to measure distance).

• Then the ADAS component makes decisions based on the observed situation.

• The decision made by the ADAS component is translated to changes in the Hu-
man/Machine Interface to inform the driver.

• The driver in turn controls the vehicle through actuators, which has impact on the
environment.

• Safety standards and best practices impose strict requirements and design goals on
the implementation of the ADAS component.

2.1.2 Fault hypotheses

With this functional architecture, we can identify the following main fault hypotheses:

• Accuracy of Object Detection: Despite the wide range of vision-based ap-
proaches using AI components, the accuracy of such solutions is still far from the re-
liability metrics expected in safety-critical systems. For example, in a well-referenced
vision based benchmark [27] with clearly visible geometric objects the state-of-the-
art accuracy is still only 99.8% [51]1. Therefore, a primary goal is the systematic
evaluation of object detection components in order to compare the accuracy with an
expected reliability.

1State-of-the-art accuracy for benchmark [27]: https://paperswithcode.com/sota/
visual-question-answering-on-clevr

6

https://paperswithcode.com/sota/visual-question-answering-on-clevr
https://paperswithcode.com/sota/visual-question-answering-on-clevr

• Robustness: In vision-based AI applications, robustness is a known issue; even
in simple, well-studied domains (e.g. as number detection [30]) existing approaches
consistently fail with the modification of a few (1-2) pixels. Therefore, several ap-
proaches train or validate such AI components with data sets enriched with modified
(or mutated) images.

• Coverage: Decision making in visual input is a challenging data-oriented problem,
where traditional testing techniques, equivalence partitioning approaches, and cov-
erage metrics are insufficient. As a consequence, the training and validation of AI
components is carried out using data with realistic distribution. Since dangerous
situations are rare, a huge amount of test data is required to reach statistically sig-
nificant confidence. (As a comparison, this requires almost 8 billion kilometers for
a fleet of 100 self-driving cars to show the failure rate of an autonomous vehicle is
lower than the human driver failure rate [46].)

• Missing Requirements or Training Data: Finally, the list of requirements and
driving best practices is incomplete. Therefore, it is necessary to provide tools
to systematically synthesize untested traffic situations to discover missing require-
ments. However, synthesizing such scenarios is a computationally challenging task
[41], which requires specialized logic reasoners [6].

2.1.3 Testing of ADAS and self driving systems

Currently, every AI developer of advanced driver assistance systems or self driving vehicles
uses their own internal methods for testing these autonomous components. There are a
few publicly available sets of test cases [13, 31], but these only list a limited number of
vaguely defined requirements that the vehicles must meet. Satisfying these requirements
is necessary, but not sufficient to guarantee the safe operation of the vehicles. For a
comprehensive testing framework we need to provide a way to test the AI components in
diverse scenarios, while also ensuring the robustness of the system.

2.2 Graph generation

2.2.1 Domain-specific languages

The purpose of domain-specific languages is to provide an efficient modeling language for
specific domains. Such domain-specific languages and modeling languages can be created
with Eclipse Modeling Framework (EMF) fro example, which is used by VIATRA. The
model describing the language is called a metamodel, and it summarizes the main concepts
and relations of the language. Using this metamodel we are able to generate Java classes,
or we can use it directly in other applications, for example as part of a graph generator or
graph search algorithm.

2.2.1.1 Eclipse Modeling Framework

I will explain the concept and creation of a metamodel, and the relevant parts of EMF
through a case study describing the simplified metamodel of a traffic situation as seen in
Figure 2.2.

7

Lane

Car Pedestrian

[0..*] following

[0..1] left

[0..1] right

[0..1] placedOn

[0..*] inFront

[0..1] toLeft

[0..1] canSee

Actor

Figure 2.2: Metamodel of a simple traffic situation

The datastructures are built from the following base elements and their specializations:

• EClass: a class with zero or more attributes and zero or more references.

• EAttribute: an attribute with a name and a type.

• EReference: an association between two classes.

• EDataType: the type of an attribute, e.g. int, float or java.util.Date

Classes may be set as abstract, such as the Actor class in my example. This means
they cannot be instantiated, but their non-abstract specializations can be. In the exam-
ple, Actor has two specializations, Car and Pedestrian. This relation is represented in
Figure 2.2 with an arrow pointing toward Actor.

An EReference can denote several types of relations, but all of them must have a name
and a multiplicity, which may be a specific numeric value, or an interval. For the latter,
the lower bound is always a number, while the upper bound can be a number or infinity
denoted by either -1 or the * character.

An EReference usually means a simple reference. A special case of this is the bi-directional
or inverse reference, which creates two EReferences for a given relation. These are the
inverse of each other, they represent the same relation from two opposing directions. On
the diagram this is represented by a line with an arrow at both ends. An example for this
can be seen in Figure 2.2, as the right and left references of the Lane class. EReference
may also represent a composition. In the metamodels, usually there is a single class that
contains all the other classes. Here I omitted this, to make the model simpler.

2.2.1.2 New specification language for modeling

The new extended version of VIATRA that I worked on uses a different language for
describing metamodels and representing partial models instead of EMF. The new specifi-
cation language is introduced in [37].

The data structures consist of classes, which can have references and attributes. The
references represent associations between two classes, and they have a multiplicity, with a
lower and an upper bound to specify the minimum and maximum number of relation an
instance may have of each of each type.

8

Example 1. A class representing a Lane section on a road. It may have multiple
following Lanes, where a Car can go. These include the trivial continuation of the
road, as well as lanes on other roads, where a vehicle is allowed to go from this Lane.
E.g. entering an intersection, there are multiple possible directions a car can proceed.
A Lane may also have at most one Lane on its left side and at most one Lane on its
right side. The left and right references form a bidirectional relation, which is denoted
by the opposite keyword.

class Lane { Lane [0..*] following
Lane [0..1] left opposite right
Lane [0..1] right opposite left }

When specifying attributes, we need to state the data type followed by the name of the
attribute. Attributes without a specified multiplicity have an implied multiplicity of one.

Example 2. A class for representing four parameters of the weather. We use inte-
gers for the attribute values.

class Weather {
int cloud
int rain
int fog
int sun

}

Example 3. An extract of an abstract situation metamodel. An Actor may have
positional relations relative to other Actors, and it can be placed on a Lane. Car and
Pedestrian are subclasses of Actor, which is denoted by the extends keyword.

abstract class Actor {
Actor [0..*] inFront , toLeft , canSee ,
Lane [0..1] placedOn }

class Car , Pedestrian extends Actor.

We can create (partial) models by specifying the types of variables and the relations they
are a part of.

Example 4. Topological model of two lanes in opposite directions.

Lane(l1). Lane(r1). right(l1 ,r1). left(r1 ,l1).
Lane(l2). Lane(r2). right(l2 ,r2). left(r2 ,l2).
following (l1 ,l2). following (r2 ,r1).

Example 5. Model with three actors, their positions and visibility relative to each
other.

Car(ego). Car(green). Car(grey). // Actors
inFront (ego ,green). toLeft (green ,grey). // Positions
canSee (ego ,green). canSee (ego ,grey). // Visibility

9

2.2.2 Pattern matching

Based on the metamodel seen previously (Figure 2.2), we can create models of road net-
works, with cars and pedestrians placed on them. Given such models, we might want to
find ones that fulfil some criteria. We need this type of search when we would like to filter
and discard models, which do not meet our expectations in some aspects. This means we
need to be able to find specific patterns inside these models. We can think of the models
as graphs, where the elements of the models are the nodes of the graph and the relations
between them are different types of edges in the graph. We want to find specific relations
or patterns in these graphs. Give a pattern, we can assign graphs to it, which contains
this pattern. This process is called graph pattern matching, and it is frequently used in
graph generator algorithms, such as the one used in the VIATRA Solver framework[42].

For this we need a language, that can be used to describe these patterns, and which
the graph pattern matcher can interpret. There are several of these, such as Object
Constraint Language (OCL) [39], or VIATRA Query Language (VQL) [12]. While creating
the patterns using these languages, we can use the types, references, etc. defined in the
metamodel. The old version of VIATRA Solver uses VQL, so I will use that in some of
my examples.

2.2.2.1 VIATRA Query Language

Using VQL we can define a pattern in the following way. We start the pattern with the
pattern keyword, which is followed by the name of the pattern, an then the parameters in
parenthesis. Finally, in braces we need to list the constraints, which need to be fulfilled for
the pattern to match the graph. It is recommended to define the types of the parameters,
but this can be done later in the body as constraint.

Example 6. The basic syntax of a pattern in VQL.

pattern myPattern (a,b : MyClass1 , c : MyClass2) {
...
constraints ;
...

}

The simplest type of constraint is the type constraint. With this we can determine the
type of a variable. This constraint is satisfied, if the type of the given variable matches
the one determined by the constraint, or one of its descendants.

Example 7. Syntax of a type constraint, which matches, if entityVariable is of type
Car.

Car(entityVariable);

Example 8.
The type constraint with type Lane matches even if entityVariable is of types Car or
Pedestrian.

Actor(entityVariable);

We can also add relations (reference, composition, attribute) as constraints. This matches,
if the given relation exists in the model.

10

Example 9. To find the lanes that are next to each other, we can search for pairs
of Lanes, which have right reference between them.

pattern rightLane (left : Lane , right : Lane) {
Lane. right(left , right);

}

Example 10. If we generate models only based on the metamodel, we might get
some models, where the left or the right reference of a Lane is pointing to itself. Of
course this cannot happen in real life, so we would like to find the models, which have
this error. This can be done with the following pattern.

pattern laneNextToItself (lane : Lane) {
Lane. right(lane , lane);

}

We can also search for transitive closure in the graphs. The transitive closure of a G =
(V, E) directed graph is the G′ = (V, E′) graph, in which there is an edge from u to v if
and only if there is a directed path from u to v in the original G graph. In our case, since
there are different types of edges in the graph, we need to provide the type of edge that
the directed path needs to consist of from u to v. In VQL these edges must be provided
in the forms of patterns. We can use the find keyword to use previously defined patterns
as part a new pattern. To search for transitive closure, we need to use the + symbol.

Example 11. We can find all the lanes to the right of a lane, if we search for all the
lanes which are reachable through right edges. For this we can use the right pattern
defined previously.

pattern rightLanes (left : Lane , right : Lane) {
find right +(left , right);

}

For negating a constraint, we can use the neg find keywords. With this we can negatively
match patterns, meaning it will not give a match if the original pattern matches, and it
will give a match if the original pattern is not found in the graph.

Example 12. We can search for lanes, which are not directly next to each other.

pattern notRightLane (lane1 : Lane , lane2 : Lane) {
neg find rightLane (lane1 , lane2);

}

Checking equality and the inequality of two variables can be done using the == and !=
operators.

Example 13. The previous example does not guarantee, that the two lane, lane1
and lane2 are different lanes. We need to give a separate constraint for this.

pattern notRightLane (lane1 : Lane , lane2 : Lane) {
lane1 != lane2;
neg find rightLane (lane1 , lane2);

}

11

Example 14. In case we would like find the lanes, that have at least one lane to its
right, but we don’t need to know which lanes are to the right, we just need to leave
lane2 out of the parameter list. If the variable is only used once, prefix or replace the
name of a variable using the _ symbol.

pattern hasRightLane (lane1 : Lane) {
find rightLane (lane1 , _);

}

A pattern can have multiple bodies separated by the or keyword. This means the pattern
will match, if at least one of the bodies matches.

Example 15. A pattern with multiple bodies.

pattern hasLeftOrRightLane (lane: Lane) {
Lane.left(lane , leftLane);

} or {
Lane.right(lane , rightLane);

}

Although VQL is capable of more than described here, I only showed the parts needed to
understand the examples in the following chapters.

2.2.2.2 Syntax of predicates in the new specification language

Using the new specification language we can define a predicate in the following way. We
start the pattern with the pred keyword, which is followed by the name of the pattern,
an then the parameters in parenthesis. Finally, in braces we need to list the constraints,
which need to be fulfilled for the pattern to match the graph. It is recommended to define
the types of the parameters, but this can be done later in the body as constraint.

Example 16. The basic syntax of a predicate in the new description language.

pred myPattern (MyClass1 a, MyClass1 b, MyClass2 c) <->
...
constraints ,
... .

Using this new description language we are able to define the same types of constraints as
with VQL. These are demonstrated below.

Example 17. Syntax of a type constraint, which matches, if entityVariable is of type
Car.

Car(entityVariable).

Example 18. The type constraint with type Lane matches even if entityVariable is
of types Car or Pedestrian.

Actor(entityVariable).

12

Example 19. To find the lanes that are next to each other, we can search for pairs
of Lanes, which have rightLane reference between them.

pred rightLane (Lane left , Lane right) <->
right(left , right).

Example 20. Transitive closure in the new description language.

pred rightLanes (Lane left , Lane right) <->
right +(left , right).

Negating a constraint, is done using the exclamation mark (!). With this we can negatively
match patterns, meaning it will not give a match if the original pattern matches, and it
will give a match if the original pattern is not found in the graph.

Example 21. Negation in the new description language.

pred notRightLane (Lane left , Lane right) <->
!right(lane1 , lane2).

Checking equality two variables can be done using the equals operator, and inequality
can be checked by negating the equality.

Example 22. Inequality in the new description language.

pred notRightLane (Lane left , Lane right) <->
! equals (lane1 , lane2),
neg find rightLane (lane1 , lane2).

Example 23. Similarly to VQL, we can prefix or replace the name of a variable with
the _ symbol if is only used once.

pred hasRightLane (Lane lane1) <->
right(lane1 , _).

A pattern can have multiple bodies separated by the semicolon (;) character. This means
the pattern will match, if at least one of the bodies matches.

Example 24. A pattern with multiple bodies.

pred hasLeftOrRightLane (Lane lane) <->
left(lane , leftLane)

; right(lane , rightLane).

If we would like to specify what truth values we want the predicated to evaluate to, we
can use direct pred instead of pred at the beginning. Then, during the pattern matching it
will only match a model, if the truth value of the predicate matches the one we specified.
For a summary of the four valued logic see Section 3.1.

Example 25. A direct predicate, which matches a Lane, if it must have a following
Lane, or if it may have one.

direct pred hasFollowing (from) <->
following (from , _to) = true| unknown .

13

Chapter 3

4-valued graph predicate
evaluation

3.1 4-valued graphs

The graph generator algorithm uses Belnap-Dunn 4-valued logic [10, 29], which allows
us to represent unfinished, partial models, as well as errors and inconsistencies arising
during the evaluation of computations over such models. The semantic foundations for
the specification language are described in [37]. This section provides a brief introduction
of Belnap-Dunn 4-valued logic based on [37].

Belnap-Dunn 4-valued logic contains the usual false false and true true truth values,
the unknown unknown value introduced for unspecified or unknown properties, and the
inconsistent error value that signals inconsistencies and computation failures. The subset
{false, true, unknown} of logic values can express partial, but consistent information.
Conversely, the subset {false, true, error} expresses possibly inconsistent, but complete
information.

Two partial orders can be defined over 4-valued logic values (Figure 3.1). Information
order (denoted by ⊑) expresses the gathering of information as new facts are learned
during the refinement of partial models. Facts with unknown logical value can be set to
either true or false, while a change to error signifies an inconsistency or failure. This
order is defined as

(X ⊑ Y) ⇔ [(X = unknown) ∨ (X = Y) ∨ (Y = error)]. (3.1)

The second partial order is implication order, which defined as

(X ≤ Y) ⇔ [(X = false) ∨ (X = Y) ∨ (Y = true)] (3.2)

and serves as a generalization of logical implication. We will write X ⊏ Y and (resp. X <
Y) when X ⊑ Y (resp. X ≤ Y) and X ̸= Y hold.

The information merge operator
⊕

merges 4-valued truth values where contradictory
information results in error. Other operations on 4-valued truth values ¬4, ∨4, and ∧4

are extensions of the usual logic operators ¬, ∨, and ∧. Their truth tables (see FFigure 3.2)
correspond with their classical counterparts for {false, true} inputs.

15

Semantically, unknown truth value represents potential true or false (or error) values,
and the semantic is chosen to cover all of those options. On the other hand, error is often
unintuitive, but it allows the precise and explicit localization of inconsistencies within
models [10, 14]. For example, we may see that if X =error and Y =unknown, then X
∨4 4 Y = true, because the only way for our logical inference to result in a consistent
truth value is to eventually learn that Y is true. Should Y turn out to be false, the
inconsistent error value will be propagated.

error

false true

unknown

≤

⊑

Figure 3.1: Logic values

⊕
u f t e

u u f t e
f f f e e
t t e t e
e e e e e

¬4

u u
f t
t f
e e

∨4 u f t e
u u u t t
f u f t e
t t t t t
e t e t e

∧4 u f t e
u u f u f
f f f f f
t u f t e
e f f e e

Figure 3.2: Truth tables of information merge and logical connectives

3.2 Creating graph patterns

To illustrate how different aspects of my work function, I will use a simplified version of a
road network and vehicle placements, shown in Figure 2.2.

The first part of my solution allows us to use our own datastructures instead of EMF
models or tables filled with EMF types, which gives us more flexibility.

With the improvements, creating a pattern has become a much simpler process. We can
define them in Java code, using disjunctive normal form (DNF), as DNFPredicate objects.
The classes used for this are shown in Figure 3.3. We can also use the new syntax described
in Section 2.2.2.2. Predicates defined using this method are then parsed and converted to
DNFPredicate objects.

16

DNFPredicate

DNFAtom

DNFAnd RelationAtom

DNFPredicateCallAtom

*1

11

*

1

Figure 3.3: Class diagram of DNF classes

My solution allow us to transform the DNFPredicate objects created in the previous step
to PQuery objects, which is the representation that VIATRA Solver can directly work
with. This is done using the following mapping:

• DNFPredicate→SimplePQuery (my own implementation of PQuery)

• DNFAnd→PBody

• DNFAtom→PConstraint

– RelationAtom→TypeConstraint

– DNFPredicateCallAtom→PositivePatternCall, NegativePatternCall or Binary-
TransitiveClosure, depending on attributes

3.2.1 Defining predicates using disjunctive normal form

Graph patterns or predicate definitions can be written by arranging predicates in dis-
junctive normal form (DNF). Both the syntax of the specification language and the Java
implementation follow this canonical normal form to represent predicates. A logical for-
mula is always evaluated on a (partial) model. In the sections below I will demonstrate
how these can be created and the way they relate to the VQL patterns, as well as the
PQuery objects used by VIATRA Solver. I will also show how these are evaluated using
Belnap-Dunn 4-valued logic.

During predicate evaluation an error value occurs, when a value must be true and false
at the same time. This can happen if different constraint require different values. Since
during generation we discard models where an error is found, I will not describe evalua-
tions involving error values in detail.

17

3.2.1.1 Building blocks of predicates

A DNFAtom is an expression that can be evaluated to a truth value using Belnap-Dunn
4-valued logic described in Section 3.1. This is interface for the specific types of atoms
one may use. They are transformed to implementations of the PConstraint interface, as
expected by VIATRA Solver.

3.2.1.2 Predicates referencing relations

A RelationAtom evaluates to true, if the specified type of relation exists between the
two variables. When specifying this atom, we have to first state the type of relation the
relation, then the source and target of the relation. This atom is transformed into a
TypeConstraint object, implementing the PConstraint interface.

Example 26. Relation expressed in the new specification language.

following (lane1 , lane2).

Example 27. Relation expressed in VQL.

Lane. following (lane1 , lane2);

The type of a variable is a special type of relation. Whereas for a binary relation a
TypeConstraint means that the given type of relation exists between the two variables,
here it will evaluate to true, if the variable is an instance of the specified class, or one of
its subclasses.

Example 28. Type expressed in the new specification language.

Lane(lane1).

Example 29. Relation expressed in VQL.

Lane(lane1);

Another special relation is the interpreted equivalence, which allows us to represent ab-
stractions on the number of nodes explicitly.

Example 30. A positive and a negative equivalence expressed in the new specifica-
tion language.

equals (lane1 , lane2),
! equals (lane1 , lane3).

Example 31. A positive and a negative equivalence expressed in VQL.

lane1 == lane2;
lane1 != lane3;

Example 32. To see when a relation is evaluated to unknown, look at the following
example, illustrated in Figure 3.4. This includes five lanes named l1-l5, as well as
three cars named c1-c3. The lanes follow each other in a straight line, and the three

18

cars are placed on the first three lanes. The equality is represented by the character.
The arrows with solid lines represent the true value, while the arrows with dashed
lines are unknown. There is a Car::new node, which represents all the cars that could
exist in the model. This has an unknown existence, since we don’t know if more cars
will be created, and the possibly existing cars might be placed on the empty lanes,
so these relations are also unknown.

The twoFullLanes predicate below, will evaluate to true with the l1-l2, and the l2-l3
lane pairs, and it will evaluate to unknown with the l3-l4 and the l4-l5 ane pairs.

pred twoFullLanes (Lane lane1 , Lane lane2) <->
placedOn (_, lane1),
placedOn (_, lane2),
following (lane1 , lane2).

Figure 3.4: Partial model with unknown relation values

3.2.1.3 Conjunction of expressions

DNFAnd is the conjunction of expressions. This implements the ∧4 (and) operation. It
evaluates to true, if all included expressions evaluate to true, evaluates to false, if at
least one of the expressions evaluate to false. The cases involving unknown or error
values can be seen in Figure 3.2. When transforming it for use with VIATRA Solver, it is
turned into a PBody object.

Example 33. Conjunction expressed in the new specification language. A list of
expressions, separated by commas.

Car(car),
Lane(currLane),
placedOn (car , currLane).

Example 34. Conjunction expressed in VQL. A list of expressions, separated by
semicolons and surrounded by braces. In VQL this is called the body of the pattern.

{
Car(car);
Lane(currLane);

19

Car. placedOn (car , currLane);
}

3.2.1.4 Disjunction of conjunctions

A representation of a predicate definition, consisting of a disjunction of conjunctions.
This implements the ∨4 (or) operation. It evaluates to true, if at least one of the included
conjunctions evaluates to true. The other cases can be seen in Figure 3.2. When trans-
formed into a form required by VIATRA Solver, it is turned into a SimplePQuery object,
an implementation of the PQuery interface.

Example 35. Predicate expressed in the new specification language. It starts with
the keyword pred, followed by the name of the predicate. Then the parameters are
listen in parenthesis, together with their type. The header and the body are separated
by the <-> characters. This is followed by one or more bodies, a list of conjunctions,
separated by semicolons. The predicate is ended with a period. The semicolon is
interpreted as the or operation between the conjunctions.

pred hasLeftOrRightLane (Lane lane) <->
left(lane , leftLane)

; right(lane , leftLane).

Example 36. Predicate expressed in VQL. It starts with the keyword pattern, fol-
lowed by the name of the predicate. Then the parameters are listen in parenthesis,
together with their type. This is followed by one or bodies, a list of conjunction
surrounded by braces. These bodies are separated by the keyword or.

pattern hasLeftOrRightLane (lane: Lane) {
Lane.left(lane , leftLane);

} or {
Lane.right(lane , rightLane);

}

3.2.1.5 Referencing predicates inside predicates

This atom represents a special relation between variables, where the predicate given as
parameter is used instead of a simple relation specified in the metamodel. It evaluates to
the same value, as the referenced predicate.

Example 37. DNFPredicateCallAtom expressed in the new specification language.
Referencing a previously defined predicate hasLeftOrRightLane.

pred hasEmptyLeftOrRightLane (Lane lane) <->
hasLeftOrRightLane (lane , otherLane),
! placedOn (_actor , otherLane).

Example 38. DNFPredicateCallAtom equivalent expressed in VQL. Referencing a
previously defined predicate hasLeftOrRightLane.

pattern hasEmptyLeftOrRightLane (lane: Lane) {

20

find hasLeftOrRightLane (lane , otherLane);
neg find placedOn (_actor , otherLane);

}

The DNFPredicateCallAtom has two Boolean attributes, positive and transitive, The
positive attribute marks whether it needs to be negated or not, and if the transitive
attribute is true, we are looking for the transitive closure instead of the simple relation.
A transitive closure currently cannot be negated.

Example 39. A transitive closure expressed in the new specification language, using
the following relation.

pred reachableFollowing (Lane lane1 , Lane lane2) <->
following +(lane1 , lane2).

Example 40. A transitive closure expressed in VQL, using the following relation.
In VQL transitive closure can only be applied to patterns we define, not to simple
relation. This means, we need to wrap the following relation with a pattern.

pattern following (lane1: Lane , lane2: Lane) {
Lane. following (lane1 , lane2);

}

pattern reachableFollowing (lane1: Lane , lane2: Lane) {
find following +(lane1 , lane2);

}

3.3 Pattern matching on custom datastructures

If we want to perform pattern matching on our own datastructures instead of the datatypes
and data structures provided by EMF, we have two options. The easier method is to create
a tabular context, similar to the one mentioned in Section 1.5. Our own implementation
could accept any datatypes instead of only the EMF types. VIATRA already provides the
necessary interfaces we would need to implement. Unfortunately, this has the downside of
containing redundant steps, which cannot be circumvented. The data in the partial models
are created twice. Once when we write them into the tables provided by the interface, and
once when they are copied into an internal datastructure used by VIATRA Solver. This
redundant step has a negative impact on the performance.

The only way to circumvent this redundancy, is to create a datastructure, which imple-
ments the interfaces expected by the solver, but can also be accessed by the user. This
way the data will be written directly into this datastructure, and the solver can also use
it, without having to copy and transform it. This also means, that some of the classes
provided for the existing solutions need to be rewritten or adapted for this new solution.
Luckily, we can look at the existing solutions to see what interfaces we need to implement.

Although there were many classes created, I will only describe the most important ones
below. These are shown in Figure 3.5, along with some others, which help understand the
connection between the described classes.

21

RelationalRuntimeContext

RelationalEngineContext

RelationalQueryMetaContext ModelUpdateListener

SimplePQuery

DNF2PQuery

RelationalScope

QueriableModelStoreImpl

QueriableModelStore

QueriableModelModelStore

ModelStoreImpl

Model

ModelImpl

QueriableModelImpl

1

1

11

«create»

«create»

«create»

«create»

«create»

«create»

1

1

«create»

1 1

«create»

Figure 3.5: Class diagram of some of the classes created for pattern matching on custom
datastructures.

@Override
public Iterable <Tuple > enumerateTuples (IInputKey key , TupleMask seedMask , ITuple

seed) {
RelationView <?> relationalViewKey = checkKey (key);
Iterable < Object []> allObjects = relationalViewKey . getAll (model);
Iterable < Object []> filteredBySeed = filter (allObjects , objectArray ->

isMatching (objectArray ,seedMask ,seed));
return map(filteredBySeed , Tuples :: flatTupleOf);

}

Listing 3.1: Method used for initializing the Rete network.

3.3.1 Initiating the Rete network

One of the first steps in incremental pattern matching [11] is initiating the Rete network
[23]. This is done in the enumerateTuples() method of the RelationalRuntimeContext class,
shown in Listing 3.1, which explicitly lists all of the content of the relations in order to
index them. This is only executed once, at the beginning.

3.3.2 Applying changes to the model

The goal of the second component is to delegate changes. This component collects the
changes to the model and stores them.

The processing of changes applied to the models is shown in Figure 3.6. This process
is conducted by the ModelUpdateListener class. After the model is created and the Rete
network is initialized, they are synchronized. When we change the model using the put()
method, the change is stored in a buffer, not yet applied to the Rete network. Every new
change is placed in the buffer until the flush() method is called. This replays the changes
one by one, and delegates them to the Rete network. Once all changes have been replayed,
the model and the Rete network are once again synchronized.

22

Figure 3.6: Processing changes applied to the model

23

Chapter 4

Testing of autonomous vehicles
using graph predicates

For demonstrating a use case for graph generation, I will use my former work for this year’s
Students’ Scientific Conference [21], which I wrote with Balázs Pintér. In this we presented
a toolchain, which is able to synthesize a test set, that targets critical behaviour of AI-based
systems. Our approach relies on advanced simulator and graph generation technologies.
From the test executions we export pictures and semantic segmentation images, which then
we use as a test suite to measure the accuracy of an existing well-known image recognition
AI model. Our approach relies on advanced simulation and graph generation technologies.
In addition, our solution can help in the testing of existing AI application, or aid their
training in dangerous situations. I will show the steps which already use VIATRA, that
can easily be replaced with the description language and predicate evaluator. I will also
show some pints in the toolchain where we could introduce new uses for pattern matching.

4.1 Scenes and Situations

During our test generation, at the scenarios we followed the three abstraction levels de-
scribed in [38]: functional, logical and concrete. Concrete scenario is a sequence of scenes,
logical scenario is a sequence of situations, a functional scenario consist of logic situations.

• Scene: Scene and other terms were inconsistent in the early literature, [45] introduced
the standardized terms. According to [45], a scene describes a snapshot of the
complete environment. In our simulation-based application it means, that the scene
contains all information about the state of the simulation: the input data of all
sensors are fully specified by the scene. A scene can be interpreted as a static
snapshot of the simulation. Accordingly, concrete scenarios represent a sequence
of fully specified scenes. The concrete scenarios are fully reproducible, and only
concrete scenarios can be directly converted to executable test cases.

• Situation: a projection of a Scene excluding details that are not relevant to the input
data of the ego vehicle. Therefore, information outside the situation should not have
any impact on the behavior of the ego vehicle. The goal with the introduction of
situations is to make the description of test cases more focused, and to group similar
test cases into semantic equivalence classes. A sequence of partially specified scenes:
parameters of a scene are given as a range of possible values. A logical scenario is a
group of concrete scenarios, and by sampling from the parameter ranges, a concrete

25

scenario can be constructed. A logical scenario describes usually infinite concrete
scenarios, due to the common continuous values in the operational domain.

• Logic situation: [36] specifies a qualitative abstraction of a Situation, which extracts
only the relevant information (with respect to the requirements). For example, in-
stead of the concrete coordinates of vehicles, a logic situation represents the abstract
relations between the actors (left-to, right-to, front-of, on-lane, close-distance, far-
distance). Therefore, if two situations have the same logic situation, then the ego
vehicle should have the same (or at least similar) behavior. For example, if a vehicle
is close to, on the same lane as and in front of the ego vehicle, then the ego vehicle
should start to slow down (regardless of the concrete coordinates of the actors). The
most abstract level of scenarios can be formulated by domain experts in natural
language. The building blocks of the sequence are semantically described logical
situations.

4.2 Functional overview

Our testing framework consists of five main steps as illustrated in Figure 4.1. First, we
create a map file that describes a road network. Then we generate the abstract situation,
which determines the relations between the actors, and we also generate the actor’s behav-
ior. In the third step, concrete coordinates are calculated for the positions of the actors,
and some elements in the surrounding area are varied for robustness testing. Next, we
load the map and the starting scene into a simulator and execute the behaviors assigned
to the actors during the simulation. In the final step we can evaluate the tests based on
sensor data, video stream and execution trace provided by the simulator.

Figure 4.1: Functional overview

The presented testing framework is built upon and greatly improves our previous work
from 2019 [22]. In Figure 4.1 our previous and current work phases are highlighted with
different colors. While the aim of our previous work was to generate abstract situations
on synthesized artificial maps, now we focus on importing real maps, generating concrete
scenes and integrating a simulator into a complete workflow.

4.2.1 Map generation

While testing vehicles in real life is usually done on a test-track or sometimes on public
roads, a simulation environment gives us more options. The easiest of them is if someone

26

Scenery

RoadJunction

LaneSegment

type : LaneType = Driving

LaneType

Driving
Walking
Biking
Shoulder

JunctionPath

Path

[0..*] lanes

[0..*] roads
[0..*] junctions

[0..*] precedingPaths [0..*] followingPaths

[0..*] paths
[0..1] leftLane

[0..1] rightLane

[0..*] sameDirLanesInSec [0..*] oppDirLaneInSec

Figure 4.2: Metamodel of the road network

provides a premade map of an existing test-track, such as ZalaZONE1, in OpenDrive
format. This ensures that the test executed in the simulator can be reproduced in real life
if it is needed.

Figure 4.2 illustrates the metamodel we used to represent road networks, which is gener-
alized from the OpenDRIVE standard2.

We can use OpenStreetMap to get the map data, transform it to OpenDRIVE and Road-
Runner to create the 3D environment for the simulator (see 4.4 for more details). 3D
building models are also available publicly, so there is no need to manually construct
them. Common street objects and traffic infrastructure are also constructed here: lane
marking, traffic signs, street lights, poles, vegetation and others.

This map generation includes the first two layers of the four level scenario construction
approach, presented in [49]. Road structure (OpenDRIVE) and infrastructure (Base 3D
model of the location) belong here, these will not change, even during the perturbation
generation.

An other method available to us is to generate synthetic maps. Such generation method
is described in [22]. This used a different metamodel, shown in Figure 4.3. This uses
constraints during the generation, which originally were constructed using patterns written
in VQL. Some of these can be seen in Example 41 and Example 42. These each contain a
diagram of a graph pattern, which indicates that a model represents a road network that
cannot exist in real life. They also include the original VQL implementations, as well as
the new version of the patterns using the new syntax.

1https://avlzalazone.com/
2Current implementation available at https://github.com/ArenBabikian/CarlaScenarioGen

27

https://avlzalazone.com/
https://github.com/ArenBabikian/CarlaScenarioGen

Scenario

name : EString

RoadSegment

name : EString

Sign

name : EString

RoadComponent

name : EString

Actor

name : EString

SidewalkLane

StraightLane TurningLane

[0..*] actor

[0..1] SUT

[1..*] roadsegment

[0..*] sign

[0..*] forward

[1..*] forRoadComponent

[0..*] toLane

[0..*] fromLane

[0..1] rightLane

[0..1] leftLane

[0..*] backward

[1..1] position

Figure 4.3: Metamodel of the road network used in [22]

Counter example Graph pattern

Example 41. Missing rightLane–leftLane relation between two parallel straight
lanes going in the same direction in the same RoadSegment.

pattern missingLeftLaneConnectionToLane (
lane1 : StraightLane ,
lane2 : StraightLane) {

lane1 != lane2;
find lanesInSameSegmentAndDirection (

segment1 , lane1 , lane2);
Lane. toLane (lane1 , lane3);
Lane. toLane (lane2 , lane4);
find lanesInSameSegmentAndDirection (

segment1 , lane3 , lane4);
neg find leftLaneOrRightLaneTransitive (

lane1 ,lane2);
}

pred missingLeftLaneConnectionToLane (
StraightLane lane1 ,
StraightLane lane2) <->

! equals (lane1 , lane2),
lanesInSameSegmentAndDirection (

segment1 , lane1 , lane2),
toLane (lane1 , lane3),
toLane (lane2 , lane4),
lanesInSameSegmentAndDirection (

segment1 , lane3 , lane4),
! leftLaneOrRightLaneTransitive (

lane1 , lane2).

28

Counter example Graph pattern

Example 42. Two parallel Lanes crossing each other.

pattern crossConnection (lane1: Lane ,
lane2: Lane , lane3: Lane , lane4: Lane) {

find rightLane +(lane1 , lane2);
find rightLane +(lane3 , lane4);
Lane. toLane (lane1 , lane4);
Lane. toLane (lane2 , lane3);

}

pred crossConnection (Lane lane1 , Lane lane2 ,
Lane lane3 , Lane lane4) <->

rightLane +(lane1 , lane2),
rightLane +(lane3 , lane4),
toLane (lane1 , lane4),
toLane (lane2 , lane3).

(a) Original location
(b) OpenDRIVE from Open-

StreetMap (c) Manually modified Open-
DRIVE

(d) Google Maps 3D (e) Buildings from Open-
StreetMap (f) Buildings from Google Maps

Figure 4.4: Map generation methods

Example 43. Figure 4.4 provides insight into the environment building process.

• Figure 4.4a: screenshot of the location, from openstreetmap.org

• Figure 4.4b: OpenDRIVE file generated directly from the exported open-
streetmap file. It contains incorrect paths and lanes, tram tracks are missing.

• Figure 4.4c: Manually modified OpenDRIVE file, based on the real lanes and
paths in this area.

• Figure 4.4d: Screenshot of the birds eye view from Google Maps.

• Figure 4.4e: Virtually constructed environment based on the building database
of openstreetmap: https://osmbuildings.org/. The vegetation is not part
of the building database, it was added manually.

• Figure 4.4f: Virtually constructed environment based on the 3D building models
of Google Maps

29

openstreetmap.org
https://osmbuildings.org/

4.2.2 Situation generation

Abstract situations describe only the relevant parts of a scene: relationships between
objects, high-level states and behavior of the dynamic element are constructed here. All
of this was generated by a graph generating method based on a scene metamodel with
multiple level of abstraction available in Scenic [24]3. At this point no concrete coordinates
or maneuver paths are known, only relative positions as Figure 4.5 shows.

The situation generation also uses VIATRA, with graph patterns as constraints. Some of
these can be seen in Example 44 and Example 45, along with their equivalent using the
new syntax.

Abstraction is important, when it comes to generating dynamic objects, as we want to
cover many semantically different scenarios with as few concrete scenarios as we can. This
way coverage metrics can be established for abstract situations [36], but this is beyond
our work.

Example 44. There are multple AbstractDistanceRelation objects between the
same pair of actors.

pattern ax3(d1 : DynamicComponent , d2 : DynamicComponent){
AbstractDistanceRelation (ar1);
AbstractDistanceRelation (ar2);
find h3(d1 , ar1 , d2);
find h3(d1 , ar2 , d2);
ar1 != ar2;

}

pred ax3(DynamicComponent d1 , DynamicComponent d2) <->
AbstractDistanceRelation (ar1),
AbstractDistanceRelation (ar2),
h3(d1 , ar1 , d2),
h3(d1 , ar2 , d2),
! equals (ar1 ,ar2).

Example 45. Ego cannot be connected to another object via an AbstractPosition-
Relation because of default visibility.

pattern c4(e : EgoActor , ar : AbstractPositionRelation){
AbstractRelation .src(ar , e);

} or {
AbstractRelation .tgt(ar , e);

}

pred c4(EgoActor e, AbstractPositionRelation ar) <->
src(ar , e)

; tgt(ar , e).

Example 46. Figure 4.6a and Figure 4.6b show two different scenes in Carla. How-
ever, both of them can be described by the same abstract situation depicted in Fig-
ure 4.6c, where we have an Ego actor, another actor, v1 in front of the Ego, and a
third actor, v2 to the left of v1.

3Current implementation available at https://github.com/ArenBabikian/CarlaScenarioGen

30

https://github.com/ArenBabikian/CarlaScenarioGen

Scene

DynamicComponent

type : ActorType = Car
name : EString

AbstractPositionRelation AbstractDistanceRelation

HasBehind HasInFront

HasToRight IsCloseTo

IsMidDistFrom

IsFarFrom

Orientation

Forward
Backward

AbstractRelation

HasToLeft

EgoActor OtherActor

ActorType

Car
Pedestrian

CanSee

[0..*] otherActors

[1..1] egoActor

[0..*] constraints

[1..1] tgt [1..1] src

Figure 4.5: Metamodel of the abstract situation

4.2.3 Scene generation

In this step, concrete scenes are generated based on the abstract situation created pre-
viously. Every dynamic object has to satisfy the relations and constrains of the abstract
situation, considering the base map. There are tools to generate such layout (Scenic,
[22, 6]).

Static objects and their perturbation is also generated here, based on the map file. Fig-
ure 4.7 shows the metamodel of the perturbation. We used 7 different types of objects4,
and we generated them, around the map. The number of each object type was random,
but below 9 in a scene. Also, the weather is also present in the perturbation: fog, rain,
sun and sky parameters can be configured for each scene.

Example 47. Figure 4.8a shows the layout of the dynamic objects, Figure 4.8b shows
an example layout including static objects.

Example 48. Figure 4.9 shows the generated static objects, in the background. Pic-
tures in the same row were taken from the same location, with different object layout.

Example 49. We constructed multiple weather blueprint, with different fog, rain,
cloud and sun parameters, Figure 4.10 shows the same scenario with different weather.

Combining the concrete static and dynamic objects on the map gives a scenario. The result
of the layout generation looks like 4.8a. (excluding static objects, due to the visibility.)

The 4th level of the 4 level model [49] is the environment conditions. Testing at different
environment conditions is really vital, as proven in [44] small changes of the light or weather
conditions can result in a bad (and dangerous) path prediction. At the perturbation we

4Each object types can have multiple blueprints: e.g: there are 4 different bench blueprints.

31

(a) Situation 1 in Carla (b) Situation 2 in Carla

(c) Abstract model

Figure 4.6: A model of an abstract situations and two examples of it in the simulator

also generated weather types, with different fog, rain, sun and sky parameters. These are
separated from the scene file, but at the execution it can be configured: this provides more
portability.

Figure 4.2.3 shows how we can represent four parameters of the weather in our model. It
also has a possible constraint, which prevents the generation of weather conditions, where
it is raining while there are no clouds in the sky.

Example 50. The weather parameters are represented as integers. We consider it
an error if it’s raining while the cloud covers less than 30% of the sky.

class Weather {
int cloud
int rain
int fog
int sun

}

pred sunshineAndRain (Weather w) <->
cloud(w,c),
rain(w,r),
c < 30,
r >= 10.

4.2.4 Test execution

Given a scenario, we can load it into a simulator. For this purpose we use the open-
source Carla running on Unreal Engine, but there are other options as well, like LGSVL
or the popular video game Grand Theft Auto V. The scenario can contain behavior for all
the actors which are executed in this step. Configuring the environment conditions is also
executed here, we can change the weather even in run time. The SUT may be implemented
separately, so we are able to test different versions of the system in the same scenario.
From the simulator we get a video stream, an execution trace and all the sensor data
necessary for evaluating the results. In our work we captured images from the position of
a dashcam, with the corresponding semantic segmentation images as ground truth.

32

Scene

Background

Weather

fog : EInt
rain : EInt
sun : EInt
sky : EInt

BackgroundObject

Barrier Garbage ATMAdvertisment

BenchContainer VendingMachine

[0..*] backgroundobject

[1..1] weather

[1..1] background

Figure 4.7: Metamodel of the perturbations

4.2.5 Test evaluation

Using the sensor data and ground truth received from the simulator we are able to train
and test components or entire systems. For our demonstration we created training and
test data sets for object recognition AIs used in a vision based benchmark [51].

4.3 Testing approaches

Proving the correct behavior of an ML/DL-based component or system is a challenging
task: Verification is not possible on large scale, and testing requires a lot of resources
(either data, computing capacity and/or time).

With our testing workflow multiple testing approach is realizable:

• Metamorphic testing

• Coverage based

4.3.1 Metamorphic testing

Metamorphic testing methods eliminate one of the hardest parts of the testing: getting a
good oracle. For metamorphic testing knowing the ground truth is not required in advance.
The main idea of metamorphic testing is to use the metamorphic relations between inputs,

33

(a) Vehicles (b) Layout with static objects

Figure 4.8: Layout of an abstract situation

Figure 4.9: Static object comparison

and check the results of the component/system for those inputs. The outputs for similar5

inputs should be the same, or close to each other (e.g.: a picture of a giraffe should be
recognized, even after some noise is added). This can reveal many errors of the system,
when the results are (too) different there must be an error, but it can not prove the lack
of failures: the output can be the same for the mutated inputs, but both can be wrong.
Although this is a serious problem, metamorphic testing is still really useful, to prove
the robustness of ML/DL-based components/systems. For computer vision components
metamorphic relations can be affine transformations (e.g. rotation, scaling, etc..), but we
can create equivalence classes for the input, based on semantic data: adding, changing or
removing objects in the background should not change the object detection capabilities of
a computer vision system of the system, but as described in [19, 47] in many cases it does.

5two inputs are similar, when they have a metamorphic relationship, meaning that one can be trans-
formed to the other using metamorphic perturbation methods (e.g.: affine transformation, adding or
removing some noise, semantic mutation)

34

(a) Cloudy, rainy, foggy weather (b) Sunny

(c) Cloudy sunset (d) Foggy sunset

Figure 4.10: Weather conditions in Carla

Figure 4.11: Execution

Different filters on an image can also make computer vision components fail, as presented in
[44]. In [44] (and in our case too), the filters were weather conditions: rain, fog, cloudiness,
and sun parameters.

For metamorphic testing we generated many metamorphic perturbations to each
equivalence class. This way we generated plenty semantically similar, but perturbed test

case.

4.3.2 Coverage based testing

Based on the metamodel of the abstract situation multiple, situations can be generated
with graph generating methods. As the abstract situation only contains a few different
relations and elements due to the qualitative abstraction, the number of possible abstract
situations are finite (with a certain number of actors), and even the similarity of the
abstract situations can be measured by shape analysis techniques.

For coverage based testing we generate as many different abstract situations as possible,
while introducing only a limited number of metamorphic mutations.

35

4.4 Summary of scenario building

During the testing workflow in 4.1, we followed the 4 level scenario hierarchy, mentioned
in [49]. This allowed us, to handle the different levels of a scenario in each abstraction
layer differently, making the process more transparent and portable.

• Level 1: Road network
Road structure is described with roads, lanes, junctions with the corresponding
geometry and properties.

• Level 2: Infrastructure
At this level, situation-dependent adaptions are added to the basic road: not only
the traffic guidance infrastructure but the static objects (buildings, trees, and other
street objects) are defined here.

• Level 3: Dynamic objects
The quantity and the behavior of the dynamic elements are defined at this level.
The behavior and the property can be defined on various abstraction levels, as we
described earlier, our workflow contains abstract situations and concrete scenarios
too.

• Level 4: Environment conditions
Environment conditions can make big differences, even when the first 3 level is the
same, driving in a dark, rainy weather is completely different from a sunny day
driving, not only visually, but the physics of the track can also change (e.g. less
traction in rain)

• Extra level
Some publications [8, 2, 7] added a new level (2.5 in our context) between infras-
tructure and dynamic object levels, as the temporary modification of the first two
levels. We only mutated the static objects: the mutations could be considered as an
extra level, but this covers less than the additional level in [8] or in [2]

36

Chapter 5

Evaluation

5.1 Research questions

I evaluated my solution by formulating various research questions and answering them by
measuring execution times. These are the research questions I aim to answer:

RQ1 How does the pattern matching scale if we increase the model size?

RQ2 How does the pattern matching scale if we increase the number of changes?

5.2 Selected domain

For the measurement I used a simple simple metamodel shown in Figure 5.1. The imple-
mentation of the metamodel using the new specification language is shown in Listing 5.1.

TrafficSituation

Lane Car[0..1] on

[0..*] lanes [0..*] cars

[0..*] following

[0..1] right

[0..1] left

Figure 5.1: Metamodel used in the measurements

class Lane {
Lane [0..*] following
Lane [0..1] left opposite right
Lane [0..1] right opposite left

}
class Car {

Lane [0..1] on
}

Listing 5.1: Implementation of the metamodel using the new syntax

37

5.2.1 Patterns in VIATRA

For the measurements using VIATRA I implemented the required graph patterns in VQL,
as shown in Listing 5.2.

pattern closeCars (car1: Car , car2: Car) {
// same lane
Car.on(car1 ,lane);
Car.on(car2 ,lane);
car1 != car2;

} or {
// following lane
Lane. following (lane1 ,lane2);
Car.on(car1 ,lane1);
Car.on(car2 ,lane2);

} or {
// neighboring lanes
Lane.left(lane1 ,lane2);
Car.on(car1 ,lane1);
Car.on(car2 ,lane2);

}

pattern followingLane (from: Lane , to: Lane) {
Lane. following (from ,to);

}
pattern carOnLane (car: Car , lane: Lane) {

Car.on(car ,lane);
}

pattern spawnCar (lane : Lane) {
neg find followingLane (_,lane);
neg find carOnLane (_,lane);

}
pattern despawnCar (lane : Lane , car: Car) {

neg find followingLane (lane ,_);
find carOnLane (car ,lane);

}

pattern moveCar (from: Lane , to: Lane , car: Car) {
Lane. following (from ,to);
Car.on(car ,from);

} or {
Lane.left(from ,to);
Car.on(car ,from);

} or {
Lane.right(from ,to);
Car.on(car ,from);

}

Listing 5.2: VQL implementation of the graph patterns

38

5.2.2 Patterns with the new syntax

The predicates implementing the graph patterns in the new specification language are
shown in Listing 5.3. I chose to use direct predicates, so I could specify to match for true
and unknown values. These predicates are semantically equivalent to the ones implemented
in VQL.

direct pred closeCars (car1 , car2) <->
on(car1 ,lane)= true|unknown ,
on(car2 ,lane)= true|unknown ,
equals (car1 ,car2)= false

; following (lane1 ,lane2)= true|unknown ,
on(car1 ,lane1)= true|unknown ,
on(car2 ,lane2)= true| unknown

; left(lane1 ,lane2)= true|unknown ,
on(car1 ,lane1)= true|unknown ,
on(car2 ,lane2)= true| unknown .

direct pred hasFollowing (from) <->
following (from ,_to) = true| unknown .

direct pred hasPrevious (to) <->
following (_from ,to) = true| unknown .

direct pred carOnLane (car ,lane) <->
on(car ,lane) = true| unknown .

direct pred spawnCar (lane) <->
Lane(lane) = true|unknown ,
! hasPrevious (lane),
! carOnLane (_,lane).

direct pred despawnCar (lane ,car) <->
! hasFollowing (lane),
carOnLane (car ,lane).

direct pred moveCar (from ,to ,car) <->
following (from ,to) = true|unknown ,
on(car ,from) = true| unknown

; left(from ,to) = true|unknown ,
on(car ,from) = true| unknown

; right(from ,to) = true|unknown ,
on(car ,from) = true| unknown .

Listing 5.3: Implementation of the graph patterns using the new syntax

39

5.3 Measurement setup

The measurement workflow is shown in Figure 5.4. The measurements have three param-
eters:

• x: The number of lanes following each other.

• y: The number of parallel lanes.

• n: The number of times the changes are applied and pattern matching is executed.

First, I initialize the predicates, an empty model and the query engine in the Init phase.
Next, in the Build step I build up the model, which consists of x ∗ y lanes in a grid, and y
cars placed randomly on these lanes. Figure 5.2 shows an example of a four by four grid
of lanes with four cars. The forward direction is to the right, and the arrows show which
lane each car is able to move to.

Figure 5.2: An example model of a four by four grid of lanes with four cars

Figure 5.3: An example model of a four by four grid of lanes with three cars after
despawning and moving

In the next step an iteration starts, where I first despawn all cars that are on a lane that
has no following lane. In Figure 5.2 car C4 would be removed, since it can no longer go
forward. Next I move all remaining cars from their current lane to its following lane or
either of the lanes next to them. After this step the example might look like Figure 5.3.
The third and final step in the iteration is spawning new cars to make sure there are y
cars in the model. These new cars are placed randomly on the lanes. These three steps
are repeated n times. After n iterations the measurement stops. The runtime of each step
is measured separately.

I ran the same measurement using both the original VIATRA and the new extension. I
ran the measurement on five different model sizes, ran the model modification for 5000
iterations, while saving the runtime after every 1000 iterations. Before the measurement

40

of both tools, I ran a similar, but smaller setup to account for the JVM warm up. Each
measurement was repeated 25 times, and I used the median value of the results, to filter
out the noise.

Model sizes used for measurement:

• 50: 50x50 lanes, 50 cars (10100 nodes+edges)

• 100: 100x100 lanes, 100 cars (40200 nodes+edges)

• 150: 150x150 lanes, 150 cars (90300 nodes+edges)

• 200: 200x200 lanes, 200 cars (160400 nodes+edges)

• 250: 250x250 lanes, 250 cars (250500 nodes+edges)

• 500: 500x500 lanes, 500 cars (1001000 nodes+edges)

• 750: 750x750 lanes, 750 cars (2251500 nodes+edges)

• 1000: 1000x1000 lanes, 1000 cars (4002000 nodes+edges)

• 1250: 1250x1250 lanes, 1250 cars (6252500 nodes+edges)

Figure 5.4: Measurement setup

For the measurements I used the following hardware, software versions, and settings:

• Java version: 17

• Maximum Java heap size: 8GB

• VIATRA version: 2.6.0

• Windows 10

• CPU: Intel Core i7-9750H

5.4 Measurement results

Figure 5.5a shows how the runtime changes if we increase the number of nodes and edges
in the model used in the setup. The horizontal axis is the size of the model on which I
ran the pattern matching, as detailed above. The vertical axis shows the time it took to
complete 5000 iteration of modification on the model, in milliseconds.

Figure 5.5a shows the runtime the runtime of one iteration, measured between iterations
4000 and 5000. The horizontal axis is the nodes and edges in the model on which I ran the

41

pattern matching, as detailed above. The vertical axis shows the time it took to complete
one iteration of modification on the model, in milliseconds.

For Figure 5.5c, I used the measurement result from the 1250x1250 model size. The
horizontal axis shows the number of iterations completed, while the vertical axis is the
execution time in milliseconds.

5.5 Discussion of the results

As we can see in Figure 5.5, all three types of measurement show that my solution not only
kept the performance of VIATRA, on large models it outperformed it, even on custom
datastructures. From Figure 5.5a we can see that on smaller model sizes there is no
significant difference between my approach and VIATRA, however on larger models my
solution is about 35% faster ().

On Figure 5.5b we can see that the size of the model has only negligible effect on the
execution time of performing a query and applying a change to the model, as it is nearly
constant. Figure 5.5c shows the same result, the total executing time linearly increases as
we increase the model size.

RQ1 With respect to the model size, my solution scales better than the original VIA-
TRA. The runtime increases close to linearly with the size of the model.

RQ2 The runtime of the pattern matching linearly increases with the number of changes
applied. A modification on the model takes the same amount of time at the beginning,
as after many iterations.

42

0

20 000

40 000

60 000

80 000

100 000

120 000

140 000

160 000

0 1000000 2000000 3000000 4000000 5000000 6000000 7000000

R
u

n
�

m
e

(m
s)

Model size

VQL My approach

(a) Change in total runtime by model size

0

0,005

0,01

0,015

0,02

0,025

0 1000000 2000000 3000000 4000000 5000000 6000000 7000000

R
u

n
�

m
e

(m
s)

Model size

VQL My approach

(b) Runtime of one iteration by model size

0

20000

40000

60000

80000

100000

120000

140000

160000

1000 2000 3000 4000 5000

R
u

n
�

m
e

(m
s)

Number of itera�ons

VQL My approach

(c) Change in total runtime by number of iterations

Figure 5.5: Runtime measurements

43

Chapter 6

Conclusions and future work

Graph generator algorithms are used in a multitude of scientific disciplines, as well as the
development and testing of software, and critical systems. Since these use cases usually
involve generating a substantial amount of models, often with immense sizes, it is crucial
to improve the performance of the graph generator algorithm as much as possible. It is
also important to make the solution portable, since requiring a difficult setup may deter
some from using our solution, even if it best suits their needs. The key elements of my
work are the following:

• I designed and implemented a solution to execute pattern matching on custom datas-
tructures using VIATRA.

• I created a way to transform predicates written in disjunctive normal form (DNF)
into a form that is expected by VIATRA.

• I demonstrated the use of graph generation, on a complex case study. This shows
a modular testing approach for testing autonomous systems, which utilizes graph
generation in several of its steps.

• I compared the performance of my solution to the original VIATRA by applying
small changes to different sizes of models and measuring the runtime over thousands
of iterations.

Future work I intend to further evaluate the performance of the new predicate evalu-
ator and custom datastructures on an established benchmark [43], and compare it to the
original VIATRA, as well as other existing query technologies.

45

Acknowledgements

I would like to thank the co-author of my Students’ Scientific Conference report, Balázs
Pintér, and his advisor, dr. András Vörös. I also want to thank Aren A. Babikian for
his contribution in modeling and generating situations, which we used in the Students’
Scientific Conference report, and was also part of my case study. Finally, I would like to
thank my advisor, dr. Oszkár Semeráth, for all the help and guidance in the past years.

47

List of Figures

2.1 Functional overview of a generic ADAS component. 6

2.2 Metamodel of a simple traffic situation . 8

3.1 Logic values . 16

3.2 Truth tables of information merge and logical connectives 16

3.3 Class diagram of DNF classes . 17

3.4 Partial model with unknown relation values 19

3.5 Class diagram of some of the classes created for pattern matching on custom
datastructures. 22

3.6 Processing changes applied to the model . 23

4.1 Functional overview . 26

4.2 Metamodel of the road network . 27

4.3 Metamodel of the road network used in [22] 28

4.4 Map generation methods . 29

4.5 Metamodel of the abstract situation . 31

4.6 A model of an abstract situations and two examples of it in the simulator . 32

4.7 Metamodel of the perturbations . 33

4.8 Layout of an abstract situation . 34

4.9 Static object comparison . 34

4.10 Weather conditions in Carla . 35

4.11 Execution . 35

5.1 Metamodel used in the measurements . 37

5.2 An example model of a four by four grid of lanes with four cars 40

5.3 An example model of a four by four grid of lanes with three cars after
despawning and moving . 40

5.4 Measurement setup . 41

5.5 Runtime measurements . 43

A.1.1Testing workflow . 57

49

Bibliography

[1] Carla documentation. https://carla.readthedocs.io/. Accessed: 2021-10-28.

[2] Safety First for Automated Driving. page 157.

[3] Scenic documentation. https://scenic-lang.readthedocs.io/. Accessed: 2021-
10-28.

[4] Road vehicles – functional safety, 2018.

[5] Réka Albert and Albert-László Barabási. Statistical mechanics of complex networks.
Rev. Mod. Phys., 74:47–97, Jan 2002. DOI: 10.1103/RevModPhys.74.47. URL
https://link.aps.org/doi/10.1103/RevModPhys.74.47.

[6] Aren A Babikian, Oszkár Semeráth, Anqi Li, Kristóf Marussy, and Dániel Varró.
Automated generation of consistent models using qualitative abstractions and explo-
ration strategies. Software and Systems Modeling, pages 1–25, 2021.

[7] G Bagschik, T Menzel, C Korner, and M Maurer. Wissensbasierte Szenariengener-
ierung für Betriebsszenarien auf deutschen Autobahnen. page 14.

[8] Gerrit Bagschik, Till Menzel, and Markus Maurer. Ontology based scene creation for
the development of automated vehicles. In 2018 IEEE Intelligent Vehicles Symposium
(IV), pages 1813–1820. IEEE, 2018.

[9] Albert-László Barabási and Réka Albert. Emergence of scaling in random networks.
Science, 286(5439):509–512, 1999. DOI: 10.1126/science.286.5439.509. URL
https://www.science.org/doi/abs/10.1126/science.286.5439.509.

[10] Nuel D. Belnap. A Useful Four-Valued Logic, pages 5–37. Springer Netherlands,
Dordrecht, 1977. ISBN 978-94-010-1161-7. DOI: 10.1007/978-94-010-1161-7_2.
URL https://doi.org/10.1007/978-94-010-1161-7_2.

[11] Gábor Bergmann, András Ökrös, István Ráth, Dániel Varró, and Gergely Varró.
Incremental pattern matching in the viatra model transformation system. In Pro-
ceedings of the Third International Workshop on Graph and Model Transforma-
tions, GRaMoT ’08, page 25–32, New York, NY, USA, 2008. Association for Com-
puting Machinery. ISBN 9781605580333. DOI: 10.1145/1402947.1402953. URL
https://doi.org/10.1145/1402947.1402953.

[12] Gábor Bergmann, Zoltán Ujhelyi, István Ráth, and Dániel Varró. A graph query
language for emf models. In Jordi Cabot and Eelco Visser, editors, Theory and
Practice of Model Transformations, pages 167–182, Berlin, Heidelberg, 2011. Springer
Berlin Heidelberg. ISBN 978-3-642-21732-6.

51

https://carla.readthedocs.io/
https://scenic-lang.readthedocs.io/
http://dx.doi.org/10.1103/RevModPhys.74.47
https://link.aps.org/doi/10.1103/RevModPhys.74.47
http://dx.doi.org/10.1126/science.286.5439.509
https://www.science.org/doi/abs/10.1126/science.286.5439.509
http://dx.doi.org/10.1007/978-94-010-1161-7_2
https://doi.org/10.1007/978-94-010-1161-7_2
http://dx.doi.org/10.1145/1402947.1402953
https://doi.org/10.1145/1402947.1402953

[13] Antonia Breuer, Jan-Aike Termöhlen, Silviu Homoceanu, and Tim Fingscheidt.
opendd: A large-scale roundabout drone dataset. In 2020 IEEE 23rd International
Conference on Intelligent Transportation Systems (ITSC), pages 1–6. IEEE, 2020.

[14] Marsha Chechik, Shiva Nejati, and Mehrdad Sabetzadeh. A relationship-based ap-
proach to model integration. Innovations in Systems and Software Engineering, 8
(1):3–18, Mar 2012. ISSN 1614-5054. DOI: 10.1007/s11334-011-0155-2. URL
https://doi.org/10.1007/s11334-011-0155-2.

[15] On-Road Automated Driving (ORAD) committee. Taxonomy and Definitions for
Terms Related to Driving Automation Systems for On-Road Motor Vehicles, apr 2021.
URL https://doi.org/10.4271/J3016_202104.

[16] Krzysztof Czarnecki. On-road safety of automated driving system - taxonomy and
safety analysis methods. Technical report, U. of Waterloo, 2018.

[17] George Dimitrakopoulos. The Future: Towards Autonomous Driving, pages 113–
121. Springer International Publishing, Cham, 2017. ISBN 978-3-319-47244-
7. DOI: 10.1007/978-3-319-47244-7_6. URL https://doi.org/10.1007/
978-3-319-47244-7_6.

[18] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen
Koltun. CARLA: An open urban driving simulator. In Sergey Levine, Vincent
Vanhoucke, and Ken Goldberg, editors, Proceedings of the 1st Annual Confer-
ence on Robot Learning, volume 78 of Proceedings of Machine Learning Research,
pages 1–16. PMLR, 13–15 Nov 2017. URL https://proceedings.mlr.press/v78/
dosovitskiy17a.html.

[19] Tommaso Dreossi, Daniel J Fremont, Shromona Ghosh, Edward Kim, Hadi Ra-
vanbakhsh, Marcell Vazquez-Chanlatte, and Sanjit A Seshia. Verifai: A toolkit
for the design and analysis of artificial intelligence-based systems. arXiv preprint
arXiv:1902.04245, 2019.

[20] P. Erdős and A Rényi. On the evolution of random graphs. In PUBLICATION
OF THE MATHEMATICAL INSTITUTE OF THE HUNGARIAN ACADEMY OF
SCIENCES, pages 17–61, 1960.

[21] Attila Ficsor and Balázs Pintér. Simulation-based robustness testing of adas systems.
In Student Research Societies Report, 2021.

[22] Attila Ficsor and Balázs Somorjai. Tesztelrendezések automatikus generálása au-
tonóm járművek szisztematikus ellenőrzéséhez. In Student Research Societies Report,
2019.

[23] Charles L. Forgy. Rete: A fast algorithm for the many pattern/many object
pattern match problem. Artificial Intelligence, 19(1):17–37, 1982. ISSN 0004-
3702. DOI: https://doi.org/10.1016/0004-3702(82)90020-0. URL https://
www.sciencedirect.com/science/article/pii/0004370282900200.

[24] Daniel J. Fremont, Tommaso Dreossi, Shromona Ghosh, Xiangyu Yue, Alberto L.
Sangiovanni-Vincentelli, and Sanjit A. Seshia. Scenic: a language for scenario specifi-
cation and scene generation. In Proceedings of the 40th ACM SIGPLAN Conference
on Programming Language Design and Implementation, pages 63–78, Phoenix AZ
USA, June 2019. ACM. ISBN 978-1-4503-6712-7. DOI: 10.1145/3314221.3314633.

52

http://dx.doi.org/10.1007/s11334-011-0155-2
https://doi.org/10.1007/s11334-011-0155-2
https://doi.org/10.4271/J3016_202104
http://dx.doi.org/10.1007/978-3-319-47244-7_6
https://doi.org/10.1007/978-3-319-47244-7_6
https://doi.org/10.1007/978-3-319-47244-7_6
https://proceedings.mlr.press/v78/dosovitskiy17a.html
https://proceedings.mlr.press/v78/dosovitskiy17a.html
http://dx.doi.org/https://doi.org/10.1016/0004-3702(82)90020-0
https://www.sciencedirect.com/science/article/pii/0004370282900200
https://www.sciencedirect.com/science/article/pii/0004370282900200
http://dx.doi.org/10.1145/3314221.3314633

[25] Rafael Gómez-Bombarelli, Jennifer N. Wei, David Duvenaud, José Miguel Hernández-
Lobato, Benjamín Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre,
Timothy D. Hirzel, Ryan P. Adams, and Alán Aspuru-Guzik. Automatic chemi-
cal design using a data-driven continuous representation of molecules. ACS Central
Science, 4(2):268–276, 2018. DOI: 10.1021/acscentsci.7b00572. URL https:
//doi.org/10.1021/acscentsci.7b00572. PMID: 29532027.

[26] Paul W. Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochas-
tic blockmodels: First steps. Social Networks, 5(2):109–137, 1983. ISSN 0378-
8733. DOI: https://doi.org/10.1016/0378-8733(83)90021-7. URL https://
www.sciencedirect.com/science/article/pii/0378873383900217.

[27] Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei, C. Lawrence
Zitnick, and Ross Girshick. CLEVR: A Diagnostic Dataset for Compositional Lan-
guage and Elementary Visual Reasoning. Proceedings - 30th IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2017, 2017-Janua:1988–1997, dec
2016. URL http://arxiv.org/abs/1612.06890.

[28] Nidhi Kalra and Susan M Paddock. Driving to Safety: How Many Miles of Driving
Would It Take to Demonstrate Autonomous Vehicle Reliability? page 15.

[29] Norihiro Kamide and Hitoshi Omori. An extended first-order belnap-dunn logic with
classical negation. In Alexandru Baltag, Jeremy Seligman, and Tomoyuki Yamada,
editors, Logic, Rationality, and Interaction, pages 79–93, Berlin, Heidelberg, 2017.
Springer Berlin Heidelberg. ISBN 978-3-662-55665-8.

[30] Nikhil Ketkar. Introduction to keras. In Deep learning with Python, pages 97–111.
Springer, 2017.

[31] Robert Krajewski, Julian Bock, Laurent Kloeker, and Lutz Eckstein. The highd
dataset: A drone dataset of naturalistic vehicle trajectories on german highways for
validation of highly automated driving systems. In 2018 21st International Conference
on Intelligent Transportation Systems (ITSC), pages 2118–2125. IEEE, 2018.

[32] Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg, Christos Faloutsos, and Zoubin
Ghahramani. Kronecker graphs: An approach to modeling networks. J. Mach. Learn.
Res., 11:985–1042, mar 2010. ISSN 1532-4435.

[33] Yibo Li, Liangren Zhang, and Zhenming Liu. Multi-objective de novo drug design
with conditional graph generative model, 2018.

[34] Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter Battaglia. Learning
deep generative models of graphs, 2018.

[35] Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, Charlie Nash, William L. Hamil-
ton, David Duvenaud, Raquel Urtasun, and Richard S. Zemel. Efficient graph gener-
ation with graph recurrent attention networks, 2020.

[36] István Majzik, Oszkár Semeráth, Csaba Hajdu, Kristóf Marussy, Zoltán Szatmári,
Zoltán Micskei, András Vörös, Aren A Babikian, and Dániel Varró. Towards system-
level testing with coverage guarantees for autonomous vehicles. In 2019 ACM/IEEE
22nd International Conference on Model Driven Engineering Languages and Systems
(MODELS), pages 89–94. IEEE, 2019.

53

http://dx.doi.org/10.1021/acscentsci.7b00572
https://doi.org/10.1021/acscentsci.7b00572
https://doi.org/10.1021/acscentsci.7b00572
http://dx.doi.org/https://doi.org/10.1016/0378-8733(83)90021-7
https://www.sciencedirect.com/science/article/pii/0378873383900217
https://www.sciencedirect.com/science/article/pii/0378873383900217
http://arxiv.org/abs/1612.06890

[37] Kristóf Marussy, Oszkár Semeráth, Aren A. Babikian, and Dániel Varró. A specifi-
cation language for consistent model generation based on partial models. J. Object
Technol., 19:3:1–22, 2020.

[38] Till Menzel, Gerrit Bagschik, and Markus Maurer. Scenarios for development, test
and validation of automated vehicles. In 2018 IEEE Intelligent Vehicles Symposium
(IV), pages 1821–1827. IEEE, 2018.

[39] OMG. OMG Object Constraint Language (OCL), Version 2.4, February 2014. URL
http://www.omg.org/spec/OCL/2.4/.

[40] Marwin H. S. Segler, Thierry Kogej, Christian Tyrchan, and Mark P. Waller. Gen-
erating focused molecule libraries for drug discovery with recurrent neural networks.
ACS Central Science, 4(1):120–131, 2018. DOI: 10.1021/acscentsci.7b00512. URL
https://doi.org/10.1021/acscentsci.7b00512. PMID: 29392184.

[41] Oszkár Semeráth, András Vörös, and Dániel Varró. Iterative and incremental model
generation by logic solvers. In Perdita Stevens and Andrzej Wasowski, editors, Funda-
mental Approaches to Software Engineering, pages 87–103, Berlin, Heidelberg, 2016.
Springer Berlin Heidelberg. ISBN 978-3-662-49665-7.

[42] Oszkár Semeráth, Aren A. Babikian, Sebastian Pilarski, and Dániel Varró. Via-
tra solver: A framework for the automated generation of consistent domain-specific
models. In 2019 IEEE/ACM 41st International Conference on Software Engi-
neering: Companion Proceedings (ICSE-Companion), pages 43–46, 2019. DOI:
10.1109/ICSE-Companion.2019.00034.

[43] Gábor Szárnyas, Benedek Izsó, István Ráth, and Dániel Varró. The train
benchmark: cross-technology performance evaluation of continuous model queries.
Software & Systems Modeling, 17(4):1365–1393, Oct 2018. ISSN 1619-
1374. DOI: 10.1007/s10270-016-0571-8. URL https://doi.org/10.1007/
s10270-016-0571-8.

[44] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. DeepTest: Automated
Testing of Deep-Neural-Network-driven Autonomous Cars. arXiv:1708.08559 [cs],
March 2018. URL http://arxiv.org/abs/1708.08559. arXiv: 1708.08559.

[45] Simon Ulbrich, Till Menzel, Andreas Reschka, Fabian Schuldt, and Markus Maurer.
Defining and substantiating the terms scene, situation, and scenario for automated
driving. In 2015 IEEE 18th International Conference on Intelligent Transportation
Systems, pages 982–988. IEEE, 2015.

[46] Walther Wachenfeld and Hermann Winner. The Release of Autonomous Vehicles,
pages 425–449. Springer Berlin Heidelberg, Berlin, Heidelberg, 2016. ISBN 978-3-
662-48847-8. DOI: 10.1007/978-3-662-48847-8_21.

[47] Shuai Wang and Zhendong Su. Metamorphic object insertion for testing object de-
tection systems. In 2020 35th IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 1053–1065. IEEE, 2020.

[48] Duncan J. Watts and Steven H. Strogatz. Collective dynamics of ‘small-world’ net-
works. Nature, 393(6684):440–442, Jun 1998. ISSN 1476-4687. DOI: 10.1038/30918.
URL https://doi.org/10.1038/30918.

54

http://www.omg.org/spec/OCL/2.4/
http://dx.doi.org/10.1021/acscentsci.7b00512
https://doi.org/10.1021/acscentsci.7b00512
http://dx.doi.org/10.1109/ICSE-Companion.2019.00034
http://dx.doi.org/10.1007/s10270-016-0571-8
https://doi.org/10.1007/s10270-016-0571-8
https://doi.org/10.1007/s10270-016-0571-8
http://arxiv.org/abs/1708.08559
http://dx.doi.org/10.1007/978-3-662-48847-8_21
http://dx.doi.org/10.1038/30918
https://doi.org/10.1038/30918

[49] Hermann Winner, Günther Prokop, and Markus Maurer, editors. Automotive Systems
Engineering II. Springer International Publishing, Cham, 2018. ISBN 978-3-319-
61605-6 978-3-319-61607-0. DOI: 10.1007/978-3-319-61607-0.

[50] Saining Xie, Alexander Kirillov, Ross Girshick, and Kaiming He. Exploring randomly
wired neural networks for image recognition, 2019.

[51] Kexin Yi, Jiajun Wu, Chuang Gan, Antonio Torralba, Pushmeet Kohli, and Joshua B.
Tenenbaum. Neural-symbolic vqa: Disentangling reasoning from vision and language
understanding. In NeurIPS, 2018.

[52] Jiaxuan You, Bowen Liu, Rex Ying, Vijay Pande, and Jure Leskovec. Graph convo-
lutional policy network for goal-directed molecular graph generation, 2019.

[53] G. Udny Yule. A mathematical theory of evolution, based on the conclusions of dr.
j. c. willis, f.r.s. Philosophical Transactions of the Royal Society of London. Series B,
Containing Papers of a Biological Character, 213:21–87, 1925. ISSN 02643960. URL
http://www.jstor.org/stable/92117.

55

http://dx.doi.org/10.1007/978-3-319-61607-0
http://www.jstor.org/stable/92117

Appendix

A.1 Workflow in operation

In this section we present the steps of our workflow with the corresponding technologies
and tools.

Figure A.1.1: Testing workflow

A.1.1 Map generation

With RoadRunner and the further presented tools, it is possible to create an accurate
representation of a real world location with little effort. There are solutions for end-to-end
generation of virtual environment based on video footage of a real location, but none of
them are available for the public.

For the presented solution we used OpenDRIVE map, generated from OpenStreetMap, but
customized later. The 3D model of buildings was extracted from Google Maps. We pruned
the redundant elements of the model in Blender, to get only the buildings, separately. We
constructed the map and the environment in RoadRunner. We used fence, pole, traffic
lights and other assets too, to enrich the base environment. After the map ingestion in
Carla, in Unreal Editor, we also added some extra feature to the environment: vegetation,
and some minor modification, to run the simulation smoothly. This is only the base
environment, after the mutation more static objects are in the map, but for the abstract
situation and scenario generation it is irrelevant, as it only needs the OpenDRIVE map.
The buildings and other static objects are only for the simulator.

A.1.2 Abstract situation generation

The generation of abstract situation is based on the metamodel in Figure 4.5. In our case,
it only contains vehicles, but it can handle other dynamic objects (e.g.: pedestrians) or

57

static objects. For the behavior we only used a lane following behavior, for the sake of
simplicity.

A.1.3 Scene generation

Layout An instance of the abstract situation, in the OpenDRIVE map gives the layout
of the vehicles. This is described in a scenic file, but each vehicle has it’s concrete position,
and blueprint.

Mutation Robustness test requires multiple similar inputs with small changes, so we
created many environment mutations of our map, using Scenic and Carla’s python API.
The idea was, that the base of the map remains the same (road structure, buildings,
some vegetation), but we place random objects at non-disturbing places (at least it is not
supposed to disturb the ADAS module). We generated many Scenic code, which spawned
a various number of different objects in the map. The spawning region was everywhere
except the roads (sidewalks, medians, etc..). The spawning inside a region is based on
Scenic’s random sampling, after each execution the same code places the same number of
objects at different locations. To make each execution reproducible we saved the location
and the blueprint of the objects, also in a Scenic code.

We also created different environment conditions, with different lighting, fog, rain and sky
parameters. This can be configured at the start of every simulation.

Example 51. Generated scenic snippet: Spawns 3 ATM next to the road by 0.5 to
1.5 meter.
for i in range (3):

roads = Uniform (* network .roads)
if i < 1:

spawnPoint = OrientedPoint in roads. rightEdge
else:

spawnPoint = OrientedPoint in roads. leftEdge
right of: relative to orientation of
OrentedPoint in the edge of roads
obj = ATM right of spawnPoint by Range (0.5 ,1.5)
props. append (obj)

Scene After the initial layout of the vehicles, and the mutation of static objects were
constructed, we combined them in every possible way. Note, that in our work the gen-
eration of the static and dynamic objects of the scene was independent from each other,
both methods required only the OpenDRIVE layout of the map.

Example 52. Concrete scene: contains vehicles and static objects as well. The
orientation is not specified in code, but it is determined by location.
ego = Car at (-80.76853338265082 @ 25.08448837624833) ,

with blueprint " vehicle . nissan . patrol "
id0 = Garbage at (-56.713260650634766 @ -0.6789436936378479) ,

with blueprint " static .prop. garbage02 "
id1 = Bench at (64.298583984375 @ -57.03033065795898) ,

with blueprint " static .prop. bench03 "

Executing the concrete scene above would result in all vehicles being stationary, since we
have not defined their behavior. This can be as simple or complex as we would like, and
can also be generated as mentioned in Section 4.2.2. However, in our tests we used a

58

simple behavior, where all vehicles follow the lane they are placed on, at a speed specified
as a parameter.

Example 53. Concrete scene extended with vehicle behaviors: the vehicle has a
behavior defined, which will be executed during the simulation.
ego = Car at (-80.76853338265082 @ 25.08448837624833) ,

with blueprint " vehicle . nissan . patrol ",
with behavior FollowLaneBehavior (30)

id0 = Garbage at (-56.713260650634766 @ -0.6789436936378479),
with blueprint " static .prop. garbage02 "

id1 = Bench at (64.298583984375 @ -57.030330657958984),
with blueprint " static .prop. bench03 "

Test execution Scenic can connect to Carla as a client, can load scenes into the simula-
tor and can also execute the behavior assigned to the vehicles. However, it is not capable
of everything we needed, e.g. it cannot save sensor data by default, so we had to create
our own client to do so. Since Scenic is open-source, we used it as the base of our program,
and extended it with further functionality. This includes the ability to save images from
virtual dash cams, to change the elapsed time between simulation steps, and to change
the weather.

Example 54. A typical command with arguments to run our modified Scenic.

python . \ s c e n i c . py . \ input \ scene . s c e n i c −−s imulate −−count 1
−−t imestep 0 .1 −−sampl ingrate 10 −−time 50 −−sk ip 20
−−weather 0 60 30 55 −−output . \ output −p render 0

Let’s see what all the arguments mean in Example 54:

• .\input\scene.scenic: path to the input file

• --simulate: execute the simulation in the simulator specified in the input file

• --count 1: only run the simulation once

• --timestep 0.1: set the delta time between steps to 0.1 seconds

• --samplingrate 10: only save the images in every 10th step

• --time 50: run the simulation for 50 steps

• --skip 20: in the first 20 steps no images will be saved

• --weather 0 60 30 55: set the following weather parameters: fog=0%,
cloud=60%, rain=30%, sun-angle=55°

• --output .\output: path to the output directory for the images

• -p render 0: do not show a live image of the simulation

Once Scenic loaded and interpreted the input file, it connects to Carla. At this point
we set the simulator to synchronous mode, which means now it will only calculate the
next step in the simulation once we tell it to. This allows us to retrieve all the necessary
sensor data, like the camera images between each step. We found that with relatively
short executions, where we don’t need to save more than a few thousand images it is best
to keep them in memory at this point. This is also the time when we can execute the

59

behavior of the actors. Scenic checks if any conditions meet the criteria for intervention
in any of the defined behaviors, and if necessary, it tells the affected actors what action to
take in the next step.

(a) RGB image from Carla (b) Semantic segmentation image from Carla

Once the simulation reaches the desired number of steps, we can access all the saved images
and write them to disk. In our case, we have two different cameras set up in the position
of a dashcam on a vehicle. One of them is a standard RGB camera with a horizontal
field of view of 90°, shutter speed of 1/200, and image size of 1280x720 pixels. The other
camera is a semantic segmentation camera, which with the same parameters. This camera
classifies every object in sight by displaying it in a different color according to its tags, as
seen in Figure A.1.2b (e.g., building in a different color than vehicles). This gives us the
ground truth needed for the evaluation of an object detection AI.

A.2 Scenic

Scenic [3, 24] is a probabilistic programming language designed for modeling the environ-
ments of cyber-physical systems such as robots and autonomous cars. A Scenic program
specifies a distribution of scenes, configurations of physical objects and agents; sampling
from this distribution produces concrete scenes that can be simulated to generate training
or testing data. An open-source compiler and scenario generator for the Scenic scenario
description language is available under BSD 3-Clause License.

A.2.1 Supported Simulators

Scenic is designed to be easily interfaced to any simulator. To interface Scenic to a new
simulator, there are two steps: using the Scenic API to compile scenarios and generate
scenes, and writing a Scenic library defining the virtual world provided by the simulator.
Each of the simulators natively supported by Scenic has a corresponding model.scenic file
containing its world model.

CARLA The CARLA simulator’s interface allows Scenic to be used to define au-
tonomous driving scenarios. Dynamic scenarios written with the CARLA world model
as well as scenarios written with the cross-platform Driving Domain are supported by the
interface. In this report, we used this simulator.

Grand Theft Auto V The interface to Grand Theft Auto V allows Scenic to posi-
tion cars within the game as well as to control the time of day and weather conditions.
Importing scenes into GTA V and capturing rendered images requires a GTA V plugin.

60

LGSVL The LGSVL interface supports dynamic scenarios written using the LGSVL
world model as well as scenarios using the cross-platform Driving Domain.

Webots There are several interfaces to the Webots robotics simulator, for different use
cases.

An interface for a Mars rover example. This interface is extremely simple and might be
a good baseline for developing our own interface. A general interface for traffic scenarios.
A more specific interface for traffic scenarios at intersections, using guideways from the
Intelligent Intersections Toolkit.

X-Plane The interface to the X-Plane flight simulator enables using Scenic to describe
aircraft taxiing scenarios. This interface is part of the VerifAI toolkit.

A.3 CARLA

CARLA [1, 18] is a free and open-source self-driving simulator licensed under the MIT
License. It was created from the ground up to serve as a modular and adaptable API
for addressing a variety of tasks related to autonomous driving. One of CARLA’s major
aims is to assist democratize autonomous driving research and development by providing
a platform that anyone can readily use and configure.

A.3.1 The simulator

A scalable client-server architecture underpins the CARLA simulator.

The server is in charge of everything connected to the simulation itself, including sensor
rendering, physics calculation, world-state and actor updates, and much more. Because
it aims for realistic results, running the server with a dedicated GPU is the best option,
especially when working with machine learning.

The client side is made up of a collection of client modules that govern the logic of actors
in a scene and define world conditions. This is accomplished by utilizing the CARLA API
(in Python or C++), a layer that acts as a middleman between the server and the client
and is constantly growing to include new features.

The simulator’s core structure is summarized in this way. CARLA, on the other hand, is
much more than that, as it contains many various characteristics and elements. Some of
these are listed here to give you an idea of what CARLA is capable of.

• Traffic manager. A built-in system that controls all cars other than the one being
used for learning. It serves as a conductor provided by CARLA to recreate urban-like
environments with realistic behavior.

• Sensors. Vehicles rely on them to provide information about their surroundings.
They are a specific type of actor in CARLA attached to the vehicle, and the data
they receive can be collected and stored to make the process easier. Various sorts of
these are currently supported by the project, including cameras, radars, lidar, and
many others.

61

• Recorder. This feature is used to reenact a simulation step by step for every actor
in the world. It grants access to any moment in the timeline anywhere in the world,
making for a great tracing tool.

• ROS bridge and Autoware implementation. The CARLA project ties knots
and seeks to integrate the simulator into different learning environments as a matter
of universalization.

• Open assets. CARLA offers a variety of maps for urban settings, as well as weather
control and a blueprint library with a large number of actors to choose from. How-
ever, these elements can be modified and new ones may be created using simple
guidelines.

• Scenario runner. CARLA provides a variety of routes outlining distinct conditions
to iterate on to make the learning process for vehicles easier.

A.3.2 World and client

The user runs the client module to request information or changes in the simulation. A
client is identified by an IP address and a port number. It uses a terminal to talk with the
server. Many clients may be active at the same time. Advanced multiclient management
requires thorough understanding of CARLA and synchrony.

The world is an object representing the simulation. It serves as an abstract layer that
contains the primary methods for spawning actors, changing the weather, obtaining the
current state of the environment, and so on. Each simulation has just one world. When
the map is changed, the world will be destroyed and replaced with a new one.

A.3.3 Actors and blueprints

Anything that takes part in the simulation is referred to as an actor.

• Vehicles

• Pedestrians

• Sensors

• The spectator

• Traffic signs and traffic lights

Blueprints are pre-made actor layouts that are required to spawn an actor. Models with
animations and a set of properties, in a nutshell. Some of these attributes are customizable
by the user, while others are not. A blueprint library is provided, which contains all the
blueprints as well as information about them.

A.3.4 Maps and navigation

A map is an object that represents the simulated world, primarily the town. By default,
there are eight maps available. To describe the roadways, they all use the OpenDRIVE
1.4 standard.

62

Roads, lanes, and junctions are managed by the Python API to be accessed from the
client. These are used along with the waypoint class to provide vehicles with a navigation
path.

Traffic signs and traffic lights are accessible as carla.Landmark objects that include infor-
mation about their OpenDRIVE definition. When running using the information in the
OpenDRIVE file, the simulator also creates stops, yields, and traffic light objects auto-
matically. These have bounding boxes placed on the road. Vehicles become aware of them
once inside their bounding box.

A.3.5 Sensors and data

Sensors wait for some event to happen, and then gather data from the simulation. They
require a function that specifies how to manage the data. Sensors get different forms of
sensor data depending on their type.

A sensor is an actor attached to a parent vehicle. It follows the car around collecting
data about its surroundings. The sensors available are defined by their blueprints in the
Blueprint library:

• Cameras (RGB, depth, semantic segmentation, and optical flow)

• Collision detector

• Gnss sensor

• IMU sensor

• Lidar raycast

• Lane invasion detector

• Obstacle detector

• Radar

• RSS

63

	Kivonat
	Abstract
	Introduction
	Graph generation
	Critical autonomous systems
	Testing the correctness of autonomous components
	Graph generation in testing
	Pattern matching in the past
	Structure of thesis

	Preliminaries
	Advanced driver assistance systems
	Functional overview of autonomous components
	Fault hypotheses
	Testing of ADAS and self driving systems

	Graph generation
	Domain-specific languages
	Eclipse Modeling Framework
	New specification language for modeling

	Pattern matching
	VIATRA Query Language
	Syntax of predicates in the new specification language

	4-valued graph predicate evaluation
	4-valued graphs
	Creating graph patterns
	Defining predicates using disjunctive normal form
	Building blocks of predicates
	Predicates referencing relations
	Conjunction of expressions
	Disjunction of conjunctions
	Referencing predicates inside predicates

	Pattern matching on custom datastructures
	Initiating the Rete network
	Applying changes to the model

	Testing of autonomous vehicles using graph predicates
	Scenes and Situations
	Functional overview
	Map generation
	Situation generation
	Scene generation
	Test execution
	Test evaluation

	Testing approaches
	Metamorphic testing
	Coverage based testing

	Summary of scenario building

	Evaluation
	Research questions
	Selected domain
	Patterns in VIATRA
	Patterns with the new syntax

	Measurement setup
	Measurement results
	Discussion of the results

	Conclusions and future work
	Acknowledgements
	List of Figures
	Bibliography
	Appendix
	Workflow in operation
	Map generation
	Abstract situation generation
	Scene generation

	Scenic
	Supported Simulators

	CARLA
	The simulator
	World and client
	Actors and blueprints
	Maps and navigation
	Sensors and data

