
An Initial Performance Analysis of
Graph Predicate Evaluation over Partial Models

Attila Ficsor, Oszkár Semeráth
Budapest University of Technology and Economics

Department of Measurement and Information Systems
Budapest, Hungary

Email: attila.ficsor@edu.bme.hu, semerath@mit.bme.hu

Abstract—Graph-based modeling tools are widely used during
the design, analysis and verification of complex critical systems.
Those tools enables the automation of several design steps (e.g.,
by model transformation), and the early analysis of system
designs (e.g. by test generation). The evaluation of complex graph
predicates (or graph pattern matching) is a core technique in
modeling and model transformation, and essential in scalable
graph generation. This motivated the integration of industrial
graph pattern matching tools directly to advanced data structures
used in model checking and logic reasoning algorithms.

In this paper we provide a report of a preliminary performance
benchmark combining the incremental graph pattern matching
algorithm of the Viatra framework with hash tries used for state
space exploration on partial models.

Index Terms—predicate evaluator, graph generation

I. MODEL GENERATION AND PREDICATE EVALUATION

During the design and testing of critical systems, modeling
tools are widely used, enabling the automation of several de-
velopment and testing steps with graph-based models. Graph-
based models are the primary development artifacts in those
modeling environments on which advanced modeling frame-
works are operating. To test those modeling applications, we
need a diverse set of well-formed models as test input.

However, the synthesis of valid well-formed models is
a challenging task. A common feature of scalable model
synthesis algorithms is the continuous evaluation of graph
predicates during an exploration process:

• The VIATRA Solver model generation approach [1]
combines the incremental graph pattern matching [2] with
rule-based design exploration framework [3].

• The SDG framework [4] combines standard OCL-based
tooling [5] with genetic algorithms.

In this paper we compare the performance of a new pro-
totype predicate evaluation technique using hash tries [6] for
efficiently storing multiple versions of a graph models, and
the incremental graph pattern matching algorithm [2]. We
present the measurements on a case study, where we generate
diverse and realistic scenarios for testing machine learning
components used in advanced driver-assistance systems.

II. CHALLENGES OF MODELING TECHNOLOGIES

Until now, the only documented way to create patterns for
VIATRA was in VIATRA Query Language [2]. To use this, we
needed to work our way through a long list of steps setting up

the integrated development environment (IDE). This included
installing Eclipse with Eclipse Modeling Framework (EMF)
and VIATRA, then creating a modeling project, where we
could create a metamodel. From this we had to generate model
code and editor code, which we had to use to start a Runtime
Eclipse. In this instance of Eclipse we could create a Query
Project, in it a VQL file, and in this file, we could write our
pattern in VQL language. When we saved this file, some Java
classes were generated, that we could use in our code.

This method used EMF objects to store data (i.e. the model),
and there was limited options to use other data structures. In
the existing code base in the VIATRA framework, there are
two ways to create (partial) models used as the starting point of
the generation. One is to create an EMF model either using the
graphical user interface (GUI) editor, or using Java programs.
We can then load this model, and VIATRA builds its own
internal data structure from the model. The other way we can
create a partial model is using a tabular method, where we
can create a table which we can use to write our data into.
Then based on this table, VIATRA creates its own internal
data structure, similar to the previous method. Unfortunately,
this is implemented for data types provided by EMF.

There are several challenges resulting from this:

• Setting up the IDE is not user-friendly, it has complicated
software requirements and necessary settings, that are
difficult to find.

• Portability is limited, since one version has Eclipse
dependency, while the other version without this depen-
dency is unstable.

• Originally, the pattern matching operates on data struc-
tures provided by EMF, which imposes performance lim-
itations (e.g., scalability issues with ELists and inefficient
state space exploration using EMF transactions).

To answer those challenges, we chose to integrate high
performance data structures [6] to the core pattern matching
mechanism of the VIATRA query framework.

• We provide a simple grammar to formulate type systems,
the predicates (i.e., the queries) and instance models [7].

• The framework can be used without custom editors.
• Finally, [6] promises efficient and scalable data structures

optimized for exploring huge search spaces necessitated
by explicit model checking algorithms.

TrafficSituation

Lane Car[0..1] on

[0..*] lanes [0..*] cars

[0..*] following

[0..1] right

[0..1] left

Fig. 1: EMF metamodel used in the measurements

In this paper, our main goal is to provide an initial perfor-
mance comparison between the newly developed data structure
and VIATRA. In the following, we present the domain we
selected to execute our performance comparison. For this
example we use a focused fragment of the Scenic traffic
situation modeling language [8].

III. REPRESENTING MODELS WITH EMF AND VIATRA

First, we present the domain of measurement using standard
modeling technologies.

First, review the metamodel. A metamodel describes the
main concepts and relations, of a model, and defines its main
structure. In this paper, we used a simple metamodel shown
in Figure 1 using EMF. In this metamodel, a Traffic situation
consists of Lanes and Cars. A Lane can be connected to
another Lane via the following reference, and its relation
with the other lanes are represented with the left and right
references. Cars are placed onto a single lane. Instance models
in our measurements are in accordance with this metamodel

In our measurements we are using VIATRA as a compari-
son. We implemented seven graph patterns in VQL to query

• incoming empty lane segments without preceding lanes
to spawn new cars into the scenario;

• outgoing lane segments without following lanes to
despawn cars from the scenario;

• cars on the same or adjacent lanes for listing potentially
dangerous situations;

• and potential trajectories for lane following and changing
maneuvers [8].

The implementation of the last pattern is illustrated below.
pattern moveCar(from: Lane, to: Lane, car: Car) {

Lane.following(from,to);
Car.on(car,from); }

or{ Lane.left(from,to);
Car.on(car,from); }

or{ Lane.right(from,to);
Car.on(car,from); }

IV. 4-VALUED PARTIAL MODELS

Next, we illustrate the same problem with 4-valued partial
models. Partial modeling is a technique to explicitly represent
uncertainty in models by abstracting a collection of possible
models into a single partially specified model. In this paper, we
use 4-valued logic to represent uncertainty, where traditional

Fig. 2: Partial model with unknown relation values

Car
c1 true
c2 true
c3 true
c4 true

Following
l1 l2 true
l2 l3 true
l3 l4 true
l4 l5 true

exists
l1 true
· · · true
c3 true
c4 unknown

Lane
l1 true
l2 true
l3 true
l4 true
l5 true

On
c1 l1 true
c2 l2 true
c3 l3 true
c4 l4 unknown
c4 l5 unknown

equals
l1 l1 true
· · · true

c3 c3 true
c4 c4 unknown

TABLE I: Relational representation of an example model

logic values true and false are extended with a logic value
unknown to represent uncertain or incomplete data where
both true and false are possible in the represented concrete
models, and with error to represent inconsistencies.

Figure 2 shows a partial model with five lanes and four
cars. Lanes 1-5 are following each other, and cars 1-3 are on
lanes 1-3. We know that these objects and relations exist, so
they are marked with solid arrows. The last car, c4 can be
on lanes l1 or l2. In this example, it is unknown whether it
is on either of them, these relations are marked with dashed
arrows. We extend this notation of uncertainty to existence
and equivalence as well, which enables abstract nodes that can
represent multiple or no nodes. In our example, c4 is denoted
with a dashed loop edge with the label ”equals”, which means
that c4 can represent multiple nodes. By default, other objects
are different from each other, and equal with only themselves.
Moreover, c4 is denoted with dashed line, which means that
its existence is uncertain: it can be included to, or excluded
from the model.

The same model is shown in Table I, in similar tables
as the ones used in our predicate evaluation algorithm. The
Car and Lane tables show the types of the objects, while the
Following and On tables contain the relations between the
objects. A true value means the relation exists in the model,
while an unknown value means the relation may exist in the
model. The most numerous false values are omitted in both
Figure 2 and Table I. Error values are not present in the model,
since that would mean there is an inconsistency.

4-valued partial models enable the representation of classes
and references with unknown existence using abstract nodes
and edges like c4 in Figure 2. As a syntactic sugar, [7]
introduces classes and references (illustrated below) which are
translated to abstract nodes and edges internally.
class Lane { class Car {

Lane[0..*] following Lane[0..1] on
Lane[0..1] left opposite right }
Lane[0..1] right opposite left

}

The predicates implementing the graph patterns in the new
specification language are shown below. We chose to use direct
predicates (direct pred), so we could specify to match
for true and unknown values for potential values of car
trajectories, giving us a 2-valued result. Using a predicate
(pred) without specifying the true and unknown values
would give a 4-valued result [9]. These predicates are seman-
tically equivalent to the ones implemented in VIATRA.
direct pred moveCar(from,to,car) <->

following(from,to)=true|unknown,on(car,from)=true|unknown
; left(from,to)=true|unknown,on(car,from)=true|unknown
; right(from,to)=true|unknown,on(car,from)=true|unknown.

V. EVALUATION

A. Research questions

We evaluated the performance of the query engine by
formulating various research questions and answering them by
measuring execution times. These are the research questions
we aim to answer:

RQ2 How does the model building scale if we increase the
model size?

RQ1 How does the pattern matching scale if we increase the
model size?

B. Measurement setup

The measurement workflow is shown in Figure 3. The
measurements have three parameters:

• x: The number of lanes following each other.
• y: The number of parallel lanes.
• n: The number of times the changes are applied and

pattern matching is executed.

Fig. 3: Measurement setup

First, we initialize the predicates, an empty model and the
query engine in the Init phase. Next, in the Build step we
build up the model, which consists of x ∗ y lanes in a grid,
and y cars placed randomly on these lanes. Figure 4 shows an
example of a four by four grid of lanes with four cars. The
forward direction is to the right, and the arrows show which
lane each car is able to move to.

In the next step an iteration starts, where we first despawn all
cars that are on a lane that has no following lane. In Figure 4
car C4 would be removed, since it can no longer go forward.
Next we move all remaining cars from their current lane to its
following lane or either of the lanes next to them. After this
step the example might look like Figure 5. The third and final

Fig. 4: Example model of a 4× 4 grid of lanes with 4 cars

Fig. 5: An example model after despawning and moving

step in the iteration is spawning new cars to make sure there
are y cars in the model. These new cars are placed randomly
on the lanes. These three steps are repeated n times. After n
iterations the measurement stops. The runtime of each step is
measured separately.

C. Compared approaches

We ran the same measurement using four different ap-
proaches. First, we measured VIATRA in continuous eval-
uation mode (where each model change is processed im-
mediately, denoted by VQL-continuous), then in coalescing
mode (where model updates are processed after the full
iteration, denoted by VQL-batch. VIATRA does not support
4-valued evaluation naively, those are matched on only true
and false values, using EMF as data structure. Then we
measured our approach once where we query both true and
unknown values (where all four logic value is used), and
once where we query exactly true values (denoted with
Refinery and Refinery-Abstract). We run the simulation for
5000 iterations, while saving the runtime after every 1000
iterations. Before the measurement of both tools, we ran a
similar, but smaller setup to account for the JVM warm up,
and programmatically called the garbage collector after each
run. Each measurement was repeated 25 times, and we used
the median value of the results, to filter out the noise.

We executed the measurements for multiple model sizes.
The sizes are illustrated in Table II For the measurements we
used the following hardware, software versions, and settings:
Java version: 17, maximum Java heap size: 8GB, VIATRA
version: 2.6.0, OS: Windows 10, CPU: Intel Core i7-9750H.

D. Measurement results

Figure 6a shows the runtime building the model. The
horizontal axis is the nodes and edges in the model. The
vertical axis shows the time it took to complete building the
model, in milliseconds.

size lanes cars nodes+edges
50 50x50 50 10100
100 100x100 100 40200
150 150x150 150 90300
200 200x200 200 160400
250 250x250 250 250500
500 500x500 500 1001000
750 750x750 750 2251500

1000 1000x1000 1000 4002000
1250 1250x1250 1250 6252500

TABLE II: Model sizes

Figure 6b shows how the runtime changes if we increase the
number of nodes and edges in the model used in the setup. The
horizontal axis is the size of the model on which we ran the
pattern matching, as detailed above. The vertical axis shows
the time it took to complete 5000 iteration of modification on
the model, in milliseconds.

E. Discussion of the results

On Figure 6a we can see that building the model is
slower with our solution, than the two VIATRA configuration,
because the current version of Refinery and Refinery-Abstract
uses more relation (both left and right, exists and equals),
and needs twice as many base indexing to support multiple
logic values. However, these initial performance measurement
showed potential performance improvements.

RQ1 With respect to the model size the original VIATRA
scales better than Refinery and Refinery-Abstract.
As we can see in Figure 6b, all four measurements show

a similar shape on the diagram. The fastest solution was our
approach without abstraction (Refinery), and provided better
performance then both VQL-continuous and VQL-batch are
slower. This can happen as it uses more advanced data struc-
tures than EMF and skips model management steps irrelevant

0

20000

40000

0 1000000 2000000 3000000 4000000 5000000 6000000 7000000

VQL-con�nuous VQL-batch Refinery Refinery-Abstract

(a) Runtime of model building

0
20000
40000
60000
80000

100000
120000
140000
160000
180000
200000

0 1000000 2000000 3000000 4000000 5000000 6000000 7000000

VQL-con�nuous VQL-batch Refinery Refinery-Abstract

(b) Change in total runtime by model size

Fig. 6: Runtime measurements

to running the core query evaluation engine (e.g., notification
sending, order of elements in a list, resource management).
The slowest solution was our approach with abstraction, where
the result is calculated from the combination of predicates.
This took almost twice as long to run, than without abstraction,
since this had to check roughly twice as many rows.

RQ2 With respect to the model size, Refinery scales better
than the original VIATRA. Compared to that, Refinery-
Abstract needs almost twice as much time.

VI. CONCLUSION AND FUTURE WORK

In this paper, we provided an initial performance benchmark
using VIATRA with a novel data structure representing 4-
valued partial models. Despite the richer expression power
of our data structure, our solution produced favorable perfor-
mance, better than the standard modeling technology (EMF).

In the future, we are planning to use this data structure in a
design space exploration scenario used for model generation,
replacing the backed engine of VIATRA Solver. Additionally,
we are planning to evaluate the performance of the data
structure using existing benchmarks (like [10]).

Acknowledgements: The first author was partially supported by
the European Commission and the Hungarian Authorities (NKFIH) through
the Arrowhead Tools project (EU grant agreement No. 826452, NKFIH grant
2019-2.1.3-NEMZ ECSEL-2019-00003) and by ÚNKP-21-4 New National
Excellence Program of the Ministry for Innovation and Technology from
the source of the National Research, Development and Innovation Fund. The
second author was partially supported by the NRDI Fund of Hungary, financed
under the [2019-2.1.1-EUREKA-2019-00001] funding scheme.

REFERENCES

[1] O. Semeráth, A. S. Nagy, and D. Varró, “A graph solver for the auto-
mated generation of consistent domain-specific models,” in Proceedings
of the 40th International Conference on Software Engineering, pp. 969–
980, 2018.

[2] G. Bergmann, Z. Ujhelyi, I. Ráth, and D. Varró, “A graph query language
for EMF models,” in Theory and Practice of Model Transformations,
pp. 167–182, Springer Berlin Heidelberg, 2011.

[3] H. Abdeen, D. Varró, H. Sahraoui, A. S. Nagy, C. Debreceni,
Á. Hegedüs, and Á. Horváth, “Multi-objective optimization in rule-based
design space exploration,” in ACM/IEEE international conference on
Automated software engineering, pp. 289–300, 2014.

[4] G. Soltana, M. Sabetzadeh, and L. C. Briand, “Practical constraint
solving for generating system test data,” ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 29, no. 2, pp. 1–48, 2020.

[5] M. Richters and M. Gogolla, “OCL: Syntax, semantics, and tools,” in
Object Modeling with the OCL, pp. 42–68, Springer, 2002.

[6] M. J. Steindorfer and J. J. Vinju, “Optimizing hash-array mapped tries
for fast and lean immutable jvm collections,” SIGPLAN Not., vol. 50,
p. 783–800, oct 2015.

[7] K. Marussy, O. Semeráth, A. A. Babikian, and D. Varró, “A specification
language for consistent model generation based on partial models,” J.
Object Technol., vol. 19, no. 3, pp. 3:1–22, 2020.

[8] D. J. Fremont, T. Dreossi, S. Ghosh, X. Yue, A. L. Sangiovanni-
Vincentelli, and S. A. Seshia, “Scenic: a language for scenario spec-
ification and scene generation,” in ACM SIGPLAN Conference on
Programming Language Design and Implementation, pp. 63–78, 2019.

[9] O. Semeráth and D. Varró, “Graph constraint evaluation over partial
models by constraint rewriting,” in International Conference on Theory
and Practice of Model Transformations, pp. 138–154, Springer, 2017.

[10] G. Szárnyas, B. Izsó, I. Ráth, and D. Varró, “The train benchmark:
cross-technology performance evaluation of continuous model queries,”
Software & Systems Modeling, vol. 17, no. 4, pp. 1365–1393, 2018.

	Model generation and predicate evaluation
	Challenges of modeling technologies
	Representing models with EMF and VIATRA
	4-valued partial models
	Evaluation
	Research questions
	Measurement setup
	Compared approaches
	Measurement results
	Discussion of the results

	Conclusion and future work
	References

