Toolchain for the Construction of Realistic Simulated Urban
Environments

Pintér Balazs, Attila Ficsor

Abstract: Testing safety-critical autonomous vehicles (cars, trains, or trams) is an incredibly
challenging task: those systems need to interact with an immensely complex and continu-
ously changing environment, making systematic testing unfeasible. Moreover, physical test
drives are highly costly, making simulator-based testing a favorable alternative. However, syn-
thetic simulations may fail to provide realistic sensor input, thus hindering the effectiveness
of the testing process. This paper proposes a toolchain for the semi-automated construction
of realistic road networks using real-world maps. Therefore, better quality simulations can be
implemented with higher productivity.

Keywords: simulation, realistic, ADAS, urban environment, analysis

1 Introduction

The promise of novel artificial intelligence and especially deep learning-based advanced
driver-assistance systems (ADAS) is the increase of safety on our roads. Cameras and
radar/lidar sensors observe the environment and collect information that is processed by com-
puter vision and other sensor fusion applications. Based on the gained information these sys-
tems can send warning or even actuating signals. As we rely more and more on these ADAS
technologies, ensuring their correct behavior is gaining even more importance. Various anal-
ysis techniques exist to verify the behavior of ADAS technologies. However, many of them
requires that complex, realistic inputs have to be provided for the sensors: collecting sensory
data from physical environments yields realistic data, but it is a tedious and expensive task. In
addition, there might be a need to have data from dangerous situations, that is not feasible to
collect from real, physical environments. On the other hand, simulators can serve as an alter-
native for sensory data generation without the risk of serious consequences of accidents and
other damages.

Providing realistic environments for testing ADAS in simulators is a challenging but critical
task. Manually constructing maps and the urban infrastructure is time-consuming. Artificially
generating a road layout, and adding a basic environment around it can also be useful, but this
approach might not generate realistically distributed lanes, curves, or junctions, hence during
the test some faults might not occur, while others can be overrepresented.

Our objective was to find a scalable way to create a realistic simulator environment, with
little manual effort. Based on the publicly available data of large cities, the urban environment
can be virtually constructed. This approach requires less manual work than manually con-
structing the environment, and can give realistic results, as it is based on the real world. The
results can then be used in various techniques such as testing or training ADAS technologies.

2 Overview of the approach

With the presented tools and technologies it is possible to create an accurate representation of a
real world location, suitable for testing ADAS or autonomous vehicle software in a simulation
environment. Our approach automated many time-consuming parts of the traditional virtual
environment construction. Using public data instead of building the environment from scratch
makes the environment building process much faster.

First, we extract the road geometry and the 3D environment from publicly available data
sources. In the configuration step, we can fine-tune the different parts of the environment: road

network configurations or the editing of the 3D environment can be done in this step, manually.
After the environment is constructed, we can export the environment into a standardized form,
this way the widely used tools and simulators can work with developed environment.

Data source Configuration
Road topology P Road network
geometry construction
merge
editing\" Simylation
/ ! environment
Buiding[\, | impor Unified 3D
polygons .
environment
+ textures

Figure 1: Simulator environment development workflow

2.1 Data source

Road Geometry The road geometry can be extracted from publicly available data sources
(OpenStreetMap), then the map can be converted to the desired standard format (OpenDRIVE),
which is widely supported by current test scenario generator and simulator tools.

Building polygons and textures There are multiple ways to acquire 3D models of real word
buildings. They can be extracted from public databases, with additional software. It results in
a triangle mesh file, which can be modified with any 3D modeling software.

From a public database (OpenStreetMap) we can extract the ground layout and the height
of the buildings. This results in buildings with basic geometry, without any texture. Textures
can be added manually, either using simple texture of materials, or real images.

3D buildings from Google Maps can also be extractedﬂ In the 3D model extracted from
Google Maps the buildings are geometrically accurate, they also have realistic texture.

2.2 Configuration

Road network The map file has to be imported to the environment building software (Road-
Runner), as it serves as the base of the environment, the spatial objects are adjusted to the map.
The original OpenDRIVE map is sometimes adequate, but as[Figure 2|shows, the file generated
from the data source is not always complete: sometimes lanes and junction paths are missing
and the road annotations and properties are not always correct. Fortunately, these are easy to
fix and modify with the environment building software.

3D environment The extracted 3D models of the buildings are not always ready to be used
directly in the environment building software. Usually, small modifications are needed in the
3D model, to get reusable photorealistic 3D components for the simulation environment, this
can be done with a 3D computer graphics software. The importing method results in one
comprehensive 3D model, containing everything, even the streets (and for the Google Maps
approach, the vegetation or street objects), hence the buildings should be separated and the
redundant elements must be pruned away. For the OpenStreetMap approach, we need to add
texture to the walls, to reach realistic outlook.

Tool and description: https://github.com/eliemichel/MapsModelsImporter

https://github.com/eliemichel/MapsModelsImporter

Advanced map and environment editing software are suitable for building complex envi-
ronment above the map layer, including road materials, buildings, vegetation, traffic signs and
other static objects. To make the scenes realistic in the simulation these objects are important,
there are a lot of common assets already available in their asset library. In addition, everyone
can make new assets or customize the existing ones, even importing new 3D objects or pictures
is possible.

During the construction of the environment, we can label the objects with their type, this
way it is possible to retrieve the semantic or instance segmentation data during the simula-
tion, among the visual camera, depth map or other sensors. Our environment building process
results in a realistic urban environment, which can be used for training or testing ADAS tech-
nologies or their components, in a simulated environment. For this purpose the input of the
tested component (e.g. camera footage) and the ground truth (e.g. semantic segmentation) are
also accessible, thanks to the our environment building process and the simulator.

3 Implementation

In this section we overview the main tools and technologies for the proposed realistic environ-
ment building workflow.

OpenStreetMap OpenStreetMap is an open source world map. OpenStreetMap contains de-
tailed information about roads, it serves as a suitable starting point (even though due to the
crowdsourcing data collection, it may contain some incorrectness). OpenStreetMap also con-
tains simple 3D models of the buildings, which is useful for the environment building.

OpenDRIVE OpenDRIVEEI is a widely used road network description standard, it describes
the structure of the roads in XML syntax. The standard can describe roads, lanes, junctions,
traffic signs, traffic lights, railways, switches, and many more. The standard can describe the
road-related logic of the traffic, as the geometry of the road, signals, speed restriction, traffic
lights, and other features implicate the traffic rules. It is supported (at least partially) by the
tools we are working with: Roadrunner, Scenic [1], CARLA [2].

(a) Data source (b) Generated road geometry (c) Fine tuned map

Figure 2: Map transformation steps

Developing maps: RoadRunner RoadRunne is aroad and environment design software by
VectorZero, with powerful building and editing toolset, widely supported import and export
formats and many flexible and good customizable assets. RoadRunner provides OpenDRIVE
editing tools. Other road related properties and appearance can be configured in this software,
for example the road surface, lane markings or speed limits are easily adjustable.

https://www.asam.net/standards/detail/opendrive/
Snttps://www.mathworks.com/products/roadrunner.html

https://www.asam.net/standards/detail/opendrive/
https://www.mathworks.com/products/roadrunner.html

Unreal Editor 4 For executing the test scenarios, we chose the open-source CARLA simula-
tor. CARLA simulator runs on Unreal Engine 4, and its editor Unreal Editor 4 provides rich
functionality to manipulate the visual appearance and infrastructure (but not the OpenDRIVE
map). Manually transforming the 3D objects, adding or removing street objects, vegetation is
possible here.

For the 3D models we tried both the OpenStreetMap 3D buildings and the 3D view exported
from Google Maps. These are shown in[Figure 3| along with an image taken directly in Google
Maps. Both approaches required manual modification of the 3D models. All vegetation was
placed manually in Unreal Editor, using the variety of plants in the extensive blueprint library.
The model from Google Maps contained some trees, but had too low resolution to be used. We
used Blender to cut out these parts of the model, but we could still use the original version as
a reference while placing the new, higher quality tree models.

Roadrunner and Unreal Editor allow us to label the objects, also every asset in their asset
library has a type, accordingly, the simulator can provide semantic segmentation, and instance
segmentation. CARLA'’s built-in semantic segmentation sensor encodes the type of an object
in RGB values, but multiple objects can have the same color if their types match. Semantic
segmentation images can give the ground truth for object detection, classification, or other
similar tasks, but this is not always enough. The instance segmentation sensor encodes the
type and the object’s unique ID, this way we can make difference between the overlapping
objects of the same type in the instance segmentation image.

(a) Original Google Maps (b) Buildings from Open-

StreetMap (c) Buildings from Google Maps

Figure 3: 3D building comparison

4 Conclusion

In this paper, we proposed an approach with the necessary tools to support the efficient creation
of real-world locations as virtual environments for simulators. We implemented a prototype of
the toolchain and identified the steps that need manual fine tuning/configuration. The output
of the toolchain provides realistic inputs for test scenario generation (which relies mostly on
map-topology) and for the virtual sensors in the simulator.

References

[1] D.]J. Fremont, T. Dreossi, S. Ghosh, X. Yue, A. L. Sangiovanni-Vincentelli, and S. A. Seshia,
“Scenic: a language for scenario specification and scene generation,” Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and Implementation, Jun 2019.

[2] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “CARLA: An open urban
driving simulator,” in Proceedings of the 1st Annual Conference on Robot Learning (S. Levine,
V. Vanhoucke, and K. Goldberg, eds.), vol. 78 of Proceedings of Machine Learning Research,
pp. 1-16, PMLR, 13-15 Nov 2017.

	Introduction
	Overview of the approach
	Data source
	Configuration

	Implementation
	Conclusion

